
862004 Morgan Kaufmann Publishers

Lets Build a Processor

• Almost ready to move into chapter 5 and start building a processor

• First, let’s review Boolean Logic and build the ALU we’ll need
(Material from Appendix B)

32

32

32

operation

result

a

b

ALU

872004 Morgan Kaufmann Publishers

• Problem: Consider a logic function with three inputs: A, B, and C.

Output D is true if at least one input is true
Output E is true if exactly two inputs are true
Output F is true only if all three inputs are true

• Show the truth table for these three functions.

• Show the Boolean equations for these three functions.

• Show an implementation consisting of inverters, AND, and OR gates.

Review: Boolean Algebra & Gates

882004 Morgan Kaufmann Publishers

• Let's build an ALU to support the andi and ori instructions

– we'll just build a 1 bit ALU, and use 32 of them

• Possible Implementation (sum-of-products):

b

a

operation

result

op a b res

An ALU (arithmetic logic unit)

892004 Morgan Kaufmann Publishers

• Selects one of the inputs to be the output, based on a control input

• Lets build our ALU using a MUX:

S

C
A

B
0

1

Review: The Multiplexor

note: we call this a 2-input mux
 even though it has 3 inputs!

902004 Morgan Kaufmann Publishers

• Not easy to decide the “best” way to build something

– Don't want too many inputs to a single gate

– Don’t want to have to go through too many gates

– for our purposes, ease of comprehension is important

• Let's look at a 1-bit ALU for addition:

• How could we build a 1-bit ALU for add, and, and or?

• How could we build a 32-bit ALU?

Different Implementations

cout = a b + a cin + b cin
sum = a xor b xor cin

Sum

CarryIn

CarryOut

a

b

912004 Morgan Kaufmann Publishers

Building a 32 bit ALU

b

0

2

Result

Operation

a

1

CarryIn

CarryOut

Result31
a31

b31

Result0

CarryIn

a0

b0

Result1
a1

b1

Result2
a2

b2

Operation

ALU0

CarryIn

CarryOut

ALU1

CarryIn

CarryOut

ALU2

CarryIn

CarryOut

ALU31

CarryIn

922004 Morgan Kaufmann Publishers

• Two's complement approach: just negate b and add.

• How do we negate?

• A very clever solution:

What about subtraction (a – b) ?

0

2

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b

932004 Morgan Kaufmann Publishers

Adding a NOR function

• Can also choose to invert a. How do we get “a NOR b” ?

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2+

Result

1

0

Ainvert

1

0

942004 Morgan Kaufmann Publishers

• Need to support the set-on-less-than instruction (slt)

– remember: slt is an arithmetic instruction

– produces a 1 if rs < rt and 0 otherwise

– use subtraction: (a-b) < 0 implies a < b

• Need to support test for equality (beq $t5, $t6, $t7)

– use subtraction: (a-b) = 0 implies a = b

Tailoring the ALU to the MIPS

Supporting slt

• Can we figure out the idea?

Binvert

a

b

CarryIn

CarryOut

Operation

1

0

2+

Result

1

0

Ainvert

1

0

3Less

Binvert

a

b

CarryIn

Operation

1

0

2+

Result

1

0

3Less

Overflow
detection

Set

Overflow

Ainvert

1

0

Use this ALU for most significant bit
all other bits

962004 Morgan Kaufmann Publishers

a0

Operation

CarryIn
ALU0
Less

CarryOut

b0

CarryIn

a1 CarryIn
ALU1
Less

CarryOut

b1

Result0

Result1

a2 CarryIn
ALU2
Less

CarryOut

b2

a31 CarryIn
ALU31
Less

b31

Result2

Result31

...
...

...

Binvert
Ainvert

0

0

0 Overflow

Set

CarryIn

Supporting slt

972004 Morgan Kaufmann Publishers

Test for equality

• Notice control lines:

0000 = and
0001 = or
0010 = add
0110 = subtract
0111 = slt
1100 = NOR

•Note: zero is a 1 when the result is zero!

a0

Operation

CarryIn
ALU0
Less

CarryOut

b0

a1 CarryIn
ALU1
Less

CarryOut

b1

Result0

Result1

a2 CarryIn
ALU2
Less

CarryOut

b2

a31 CarryIn
ALU31
Less

b31

Result2

Result31

...
...

...

Bnegate

Ainvert

0

0

0 Overflow

Set

CarryIn
...

...
Zero

982004 Morgan Kaufmann Publishers

Conclusion

• We can build an ALU to support the MIPS instruction set

– key idea: use multiplexor to select the output we want

– we can efficiently perform subtraction using two’s complement

– we can replicate a 1-bit ALU to produce a 32-bit ALU

• Important points about hardware

– all of the gates are always working

– the speed of a gate is affected by the number of inputs to the
gate

– the speed of a circuit is affected by the number of gates in series
(on the “critical path” or the “deepest level of logic”)

• Our primary focus: comprehension, however,

– Clever changes to organization can improve performance
(similar to using better algorithms in software)

– We saw this in multiplication, let’s look at addition now

992004 Morgan Kaufmann Publishers

• Is a 32-bit ALU as fast as a 1-bit ALU?

• Is there more than one way to do addition?

– two extremes: ripple carry and sum-of-products

Can you see the ripple? How could you get rid of it?

c1 = b0c0 + a0c0 + a0b0
c2 = b1c1 + a1c1 + a1b1 c2 =
c3 = b2c2 + a2c2 + a2b2 c3 =
c4 = b3c3 + a3c3 + a3b3 c4 =

Not feasible! Why?

Problem: ripple carry adder is slow

1002004 Morgan Kaufmann Publishers

• An approach in-between our two extremes

• Motivation:

– If we didn't know the value of carry-in, what could we do?
– When would we always generate a carry? gi = ai bi
– When would we propagate the carry? pi = ai + bi

• Did we get rid of the ripple?

c1 = g0 + p0c0
c2 = g1 + p1c1 c2 =
c3 = g2 + p2c2 c3 =
c4 = g3 + p3c3 c4 =

Feasible! Why?

Carry-lookahead adder

1012004 Morgan Kaufmann Publishers

• Can’t build a 16 bit adder this way... (too big)

• Could use ripple carry of 4-bit CLA adders

• Better: use the CLA principle again!

Use principle to build bigger adders

a4 CarryIn

ALU1
 P1
 G1

b4
a5
b5
a6
b6
a7
b7

a0 CarryIn

ALU0
 P0
 G0

b0

Carry-lookahead unit

a1
b1
a2
b2
a3
b3

CarryIn

Result0–3

pi
gi

ci + 1

pi + 1

gi + 1

C1

Result4–7

a8 CarryIn

ALU2
 P2
 G2

b8
a9
b9

a10
b10
a11
b11

ci + 2

pi + 2

gi + 2

C2

Result8–11

a12 CarryIn

ALU3
 P3
 G3

b12
a13
b13
a14
b14
a15
b15

ci + 3

pi + 3

gi + 3

C3

Result12–15

ci + 4
C4

CarryOut

1022004 Morgan Kaufmann Publishers

ALU Summary

• We can build an ALU to support MIPS addition

• Our focus is on comprehension, not performance

• Real processors use more sophisticated techniques for arithmetic

• Where performance is not critical, hardware description languages
allow designers to completely automate the creation of hardware!

1032004 Morgan Kaufmann Publishers

Chapter Five

1042004 Morgan Kaufmann Publishers

• We're ready to look at an implementation of the MIPS

• Simplified to contain only:
– memory-reference instructions: lw, sw
– arithmetic-logical instructions: add, sub, and, or, slt
– control flow instructions: beq, j

• Generic Implementation:

– use the program counter (PC) to supply instruction address

– get the instruction from memory

– read registers

– use the instruction to decide exactly what to do

• All instructions use the ALU after reading the registers

Why? memory-reference? arithmetic? control flow?

The Processor: Datapath & Control

1052004 Morgan Kaufmann Publishers

• Abstract / Simplified View:

Two types of functional units:

– elements that operate on data values (combinational)

– elements that contain state (sequential)

More Implementation Details

Data

Register #

Register #

Register #

PC Address Instruction

Instruction
memory

Registers ALU Address

Data

Data
memory

AddAdd

4

1062004 Morgan Kaufmann Publishers

• Unclocked vs. Clocked

• Clocks used in synchronous logic

– when should an element that contains state be updated?

State Elements

Clock period Rising edge

Falling edge

cycle time

1072004 Morgan Kaufmann Publishers

• The set-reset latch

– output depends on present inputs and also on past inputs

An unclocked state element

R

S

Q

Q

1082004 Morgan Kaufmann Publishers

• Output is equal to the stored value inside the element
(don't need to ask for permission to look at the value)

• Change of state (value) is based on the clock

• Latches: whenever the inputs change, and the clock is asserted

• Flip-flop: state changes only on a clock edge
(edge-triggered methodology)

"logically true",
— could mean electrically low

A clocking methodology defines when signals can be read and written
— wouldn't want to read a signal at the same time it was being written

Latches and Flip-flops

1092004 Morgan Kaufmann Publishers

• Two inputs:

– the data value to be stored (D)

– the clock signal (C) indicating when to read & store D

• Two outputs:

– the value of the internal state (Q) and it's complement

D-latch

Q

C

D

_
Q

D

C

Q

1102004 Morgan Kaufmann Publishers

D flip-flop

• Output changes only on the clock edge

D

C

Q

D

C

D
latch

D

C

Q
D
latch

D

C

Q Q

Q
Q

1112004 Morgan Kaufmann Publishers

Our Implementation

• An edge triggered methodology

• Typical execution:

– read contents of some state elements,

– send values through some combinational logic

– write results to one or more state elements

State
element

1

State
element

2
Combinational logic

Clock cycle

1122004 Morgan Kaufmann Publishers

• Built using D flip-flops

Register File

Read register
number 1 Read

data 1Read register
number 2

Read
data 2

Write
register

Write
Write
data

Register file

Read register
number 1

Register 0

Register 1

. . .

Register n – 2

Register n – 1

M

u

x

Read register
number 2

M

u

x

Read data 1

Read data 2

Do you understand? What is the “Mux” above?

1132004 Morgan Kaufmann Publishers

Abstraction

• Make sure you understand the abstractions!

• Sometimes it is easy to think you do, when you don’t

M
u
x

C

Select

32

32

32

B

A

M
u
x

Select

B31

A31

C31

M
u
x

B30

A30

C30

M
u
x

B0

A0

C0

...

...

1142004 Morgan Kaufmann Publishers

Register File

• Note: we still use the real clock to determine when to write

Write

0
1

n-to-2n

decoder

n – 1

n

Register 0

C

D

Register 1

C

D

Register n – 2

C

D

Register n – 1

C

D

...

Register number
...

Register data

1152004 Morgan Kaufmann Publishers

Simple Implementation

• Include the functional units we need for each instruction

Why do we need this stuff?

PC

Instruction
address

Instruction

Instruction
memory

Add Sum

a. Instruction memory b. Program counter c. Adder

Read
register 1

Read
register 2

Write
register

Write
Data

Registers ALUData

Data

Zero

ALU
result

RegWrite

a. Registers b. ALU

5

5

5

Register
numbers

Read
data 1

Read
data 2

ALU operation
4

Address
Read
data

Data
memory

a. Data memory unit

Write
data

MemRead

MemWrite

b. Sign-extension unit

Sign
extend

16 32

1162004 Morgan Kaufmann Publishers

Building the Datapath

• Use multiplexors to stitch them together

Read
register 1

Read
register 2

Write
register

Write
data

Write
data

Registers ALU

Add

Zero

RegWrite

MemRead

MemWrite

PCSrc

MemtoReg

Read
data 1

Read
data 2

ALU operation4

Sign
extend

16 32

Instruction
ALU

result

Add

ALU
result

M
u
x

M
u
x

M
u
x

ALUSrc

Address

Data
memory

Read
data

Shift
left 2

4

Read
address

Instruction
memory

PC

1172004 Morgan Kaufmann Publishers

Control

• Selecting the operations to perform (ALU, read/write, etc.)

• Controlling the flow of data (multiplexor inputs)

• Information comes from the 32 bits of the instruction

• Example:

 add $8, $17, $18 Instruction Format:

000000 10001 10010 01000 00000 100000

 op rs rt rd shamt funct

• ALU's operation based on instruction type and function code

1182004 Morgan Kaufmann Publishers

• e.g., what should the ALU do with this instruction
• Example: lw $1, 100($2)

 35 2 1 100

 op rs rt 16 bit offset

• ALU control input

0000 AND
0001 OR
0010 add
0110 subtract
0111 set-on-less-than
1100 NOR

• Why is the code for subtract 0110 and not 0011?

Control

1192004 Morgan Kaufmann Publishers

• Must describe hardware to compute 4-bit ALU control input

– given instruction type
00 = lw, sw
01 = beq,
10 = arithmetic

– function code for arithmetic

• Describe it using a truth table (can turn into gates):

ALUOp
computed from instruction type

Control

Instruction RegDst ALUSrc
Memto-

Reg
Reg

Write
Mem
Read

Mem
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

Read
register 1

Read
register 2

Write
register

Write
data

Write
data

Registers

ALU

Add

Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[31–0] ALU

result

Add

ALU
result

M
u
x

M
u
x

M
u
x

Address

Data
memory

Read
data

Shift
left 2

4

Read
address

Instruction
memory

PC

1

0

0

1

0

1

M
u
x

0

1

ALU
control

Instruction [5–0]

Instruction [25–21]

Instruction [31–26]

Instruction [15–11]

Instruction [20–16]

Instruction [15–0]

RegDst
Branch
MemRead
MemtoReg
ALUOp
MemWrite
ALUSrc
RegWrite

Control

1212004 Morgan Kaufmann Publishers

Control

• Simple combinational logic (truth tables)

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5– 0)

ALUOp0

ALUOp

ALU control block

R-format Iw sw beq

Op0

Op1

Op2

Op3

Op4

Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO

1222004 Morgan Kaufmann Publishers

• All of the logic is combinational

• We wait for everything to settle down, and the right thing to be done

– ALU might not produce “right answer” right away

– we use write signals along with clock to determine when to write

• Cycle time determined by length of the longest path

Our Simple Control Structure

We are ignoring some details like setup and hold times

State
element

1

State
element

2
Combinational logic

Clock cycle

1232004 Morgan Kaufmann Publishers

Single Cycle Implementation

• Calculate cycle time assuming negligible delays except:

– memory (200ps),
ALU and adders (100ps),
register file access (50ps)

Read
register 1

Read
register 2

Write
register

Write
data

Write
data

Registers ALU

Add

Zero

RegWrite

MemRead

MemWrite

PCSrc

MemtoReg

Read
data 1

Read
data 2

ALU operation4

Sign
extend

16 32

Instruction
ALU

result

Add

ALU
result

M
u
x

M
u
x

M
u
x

ALUSrc

Address

Data
memory

Read
data

Shift
left 2

4

Read
address

Instruction
memory

PC

1242004 Morgan Kaufmann Publishers

Where we are headed

• Single Cycle Problems:

– what if we had a more complicated instruction like floating
point?

– wasteful of area

• One Solution:

– use a “smaller” cycle time

– have different instructions take different numbers of cycles

– a “multicycle” datapath:

Data

Register #

Register #

Register #

PC Address

Instruction
or dataMemory Registers ALU

Instruction
register

Memory
data

register

ALUOut

A

B
Data

1252004 Morgan Kaufmann Publishers

• We will be reusing functional units

– ALU used to compute address and to increment PC

– Memory used for instruction and data

• Our control signals will not be determined directly by instruction

– e.g., what should the ALU do for a “subtract” instruction?

• We’ll use a finite state machine for control

Multicycle Approach

1262004 Morgan Kaufmann Publishers

• Break up the instructions into steps, each step takes a cycle

– balance the amount of work to be done

– restrict each cycle to use only one major functional unit

• At the end of a cycle

– store values for use in later cycles (easiest thing to do)

– introduce additional “internal” registers

Multicycle Approach

Read
register 1

Read
register 2

Write
register

Write
data

Registers ALU

Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

ALU
result

M
u
x

M
u
x

Shift
left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0

1

2

3

ALUOut

Instruction
[15–0]

Memory
data

register

Address

Write
data

Memory

MemData

4

Instruction
[15–11]

1272004 Morgan Kaufmann Publishers

Instructions from ISA perspective

• Consider each instruction from perspective of ISA.

• Example:

– The add instruction changes a register.

– Register specified by bits 15:11 of instruction.

– Instruction specified by the PC.

– New value is the sum (“op”) of two registers.

– Registers specified by bits 25:21 and 20:16 of the instruction
� Reg[Memory[PC][15:11]] <= Reg[Memory[PC][25:21]]

op
Reg[Memory[PC][20:16]]

– In order to accomplish this we must break up the instruction.
(kind of like introducing variables when programming)

1282004 Morgan Kaufmann Publishers

Breaking down an instruction

• ISA definition of arithmetic:

Reg[Memory[PC][15:11]] <= Reg[Memory[PC][25:21]] op
 Reg[Memory[PC][20:16]]

• Could break down to:
– IR <= Memory[PC]
– A <= Reg[IR[25:21]]
– B <= Reg[IR[20:16]]
– ALUOut <= A op B
– Reg[IR[20:16]] <= ALUOut

• We forgot an important part of the definition of arithmetic!
– PC <= PC + 4

1292004 Morgan Kaufmann Publishers

Idea behind multicycle approach

• We define each instruction from the ISA perspective (do this!)

• Break it down into steps following our rule that data flows through at
most one major functional unit (e.g., balance work across steps)

• Introduce new registers as needed (e.g, A, B, ALUOut, MDR, etc.)

• Finally try and pack as much work into each step
(avoid unnecessary cycles)

while also trying to share steps where possible
(minimizes control, helps to simplify solution)

• Result: Our book’s multicycle Implementation!

1302004 Morgan Kaufmann Publishers

• Instruction Fetch

• Instruction Decode and Register Fetch

• Execution, Memory Address Computation, or Branch Completion

• Memory Access or R-type instruction completion

• Write-back step

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

Five Execution Steps

1312004 Morgan Kaufmann Publishers

• Use PC to get instruction and put it in the Instruction Register.

• Increment the PC by 4 and put the result back in the PC.

• Can be described succinctly using RTL "Register-Transfer Language"

IR <= Memory[PC];
PC <= PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

Step 1: Instruction Fetch

1322004 Morgan Kaufmann Publishers

• Read registers rs and rt in case we need them

• Compute the branch address in case the instruction is a branch

• RTL:

A <= Reg[IR[25:21]];
B <= Reg[IR[20:16]];
ALUOut <= PC + (sign-extend(IR[15:0]) << 2);

• We aren't setting any control lines based on the instruction type
(we are busy "decoding" it in our control logic)

Step 2: Instruction Decode and Register Fetch

1332004 Morgan Kaufmann Publishers

• ALU is performing one of three functions, based on instruction type

• Memory Reference:

ALUOut <= A + sign-extend(IR[15:0]);

• R-type:

ALUOut <= A op B;

• Branch:

if (A==B) PC <= ALUOut;

Step 3 (instruction dependent)

1342004 Morgan Kaufmann Publishers

• Loads and stores access memory

MDR <= Memory[ALUOut];
or

Memory[ALUOut] <= B;

• R-type instructions finish

Reg[IR[15:11]] <= ALUOut;

The write actually takes place at the end of the cycle on the edge

Step 4 (R-type or memory-access)

1352004 Morgan Kaufmann Publishers

• Reg[IR[20:16]] <= MDR;

Which instruction needs this?

Write-back step

1362004 Morgan Kaufmann Publishers

Summary:

1372004 Morgan Kaufmann Publishers

• How many cycles will it take to execute this code?

lw $t2, 0($t3)
lw $t3, 4($t3)
beq $t2, $t3, Label #assume not
add $t5, $t2, $t3
sw $t5, 8($t3)

Label: ...

• What is going on during the 8th cycle of execution?
• In what cycle does the actual addition of $t2 and $t3 takes place?

Simple Questions

Read
register 1

Read
register 2

Write
register

Write
data

Registers ALU

Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[31–26]

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

ALU
result

M
u
x

M
u
x

Shift
left 2

Shift
left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0

1

2

3

M
u
x

0

1

2

ALUOut

Instruction
[15–0]

Memory
data

register

Address

Write
data

Memory

MemData

4

Instruction
[15–11]

PCWriteCond

PCWrite

IorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

26 28

Outputs

Control

Op
[5–0]

ALU
control

PC [31–28]

Instruction [25-0]

Instruction [5–0]

Jump
address
[31–0]

1392004 Morgan Kaufmann Publishers

• Finite state machines:

– a set of states and

– next state function (determined by current state and the input)

– output function (determined by current state and possibly input)

– We’ll use a Moore machine (output based only on current state)

Review: finite state machines

Inputs

Current state

Outputs

Clock

Next-state
function

Output
function

Next
state

1402004 Morgan Kaufmann Publishers

Review: finite state machines

• Example:

B. 37 A friend would like you to build an “electronic eye” for use as a fake security
device. The device consists of three lights lined up in a row, controlled by the outputs
Left, Middle, and Right, which, if asserted, indicate that a light should be on. Only one
light is on at a time, and the light “moves” from left to right and then from right to left,
thus scaring away thieves who believe that the device is monitoring their activity. Draw
the graphical representation for the finite state machine used to specify the electronic eye.
Note that the rate of the eye’s movement will be controlled by the clock speed (which
should not be too great) and that there are essentially no inputs.

1412004 Morgan Kaufmann Publishers

• Value of control signals is dependent upon:

– what instruction is being executed

– which step is being performed

• Use the information we’ve accumulated to specify a finite state machine

– specify the finite state machine graphically, or

– use microprogramming

• Implementation can be derived from specification

Implementing the Control

1422004 Morgan Kaufmann Publishers

• Note:
– don’t care if not mentioned

– asserted if name only

– otherwise exact value

• How many state
bits will we need?

Graphical Specification of FSM
MemRead

ALUSrcA = 0
IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

MemRead
IorD = 1

MemWrite
IorD = 1

RegDst = 1
RegWrite

MemtoReg = 0

RegDst = 1
RegWrite

MemtoReg = 0

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01

PCWriteCond
PCSource = 01

Instruction decode/
register fetch

Instruction fetch

0 1

Start

Jump
completion

9862

3

4

5 7

Memory read
completon step

R-type completion
Memory
access

Memory
access

Execution
Branch

completion
Memory address

computation

1432004 Morgan Kaufmann Publishers

• Implementation:

Finite State Machine for Control

PCWrite

PCWriteCond

IorD

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

NS3
NS2
NS1
NS0

O
p5

O
p4

O
p3

O
p2

O
p1

O
p0

S
3

S
2

S
1

S
0

State register

IRWrite

MemRead

MemWrite

Instruction register
opcode field

Outputs

Control logic

Inputs

1442004 Morgan Kaufmann Publishers

PLA Implementation

• If I picked a horizontal or vertical line could you explain it?
Op5

Op4

Op3

Op2

Op1

Op0

S3

S2

S1

S0

IorD

IRWrite

MemRead
MemWrite

PCWrite
PCWriteCond

MemtoReg
PCSource1

ALUOp1

ALUSrcB0
ALUSrcA
RegWrite
RegDst
NS3
NS2
NS1
NS0

ALUSrcB1
ALUOp0

PCSource0

1452004 Morgan Kaufmann Publishers

• ROM = "Read Only Memory"

– values of memory locations are fixed ahead of time

• A ROM can be used to implement a truth table

– if the address is m-bits, we can address 2m entries in the ROM.

– our outputs are the bits of data that the address points to.

m is the "height", and n is the "width"

ROM Implementation

m n

0 0 0 0 0 1 1
0 0 1 1 1 0 0
0 1 0 1 1 0 0
0 1 1 1 0 0 0
1 0 0 0 0 0 0
1 0 1 0 0 0 1
1 1 0 0 1 1 0
1 1 1 0 1 1 1

1462004 Morgan Kaufmann Publishers

• How many inputs are there?
6 bits for opcode, 4 bits for state = 10 address lines
(i.e., 210 = 1024 different addresses)

• How many outputs are there?
16 datapath-control outputs, 4 state bits = 20 outputs

• ROM is 210 x 20 = 20K bits (and a rather unusual size)

• Rather wasteful, since for lots of the entries, the outputs are the
same

— i.e., opcode is often ignored

ROM Implementation

1472004 Morgan Kaufmann Publishers

• Break up the table into two parts

— 4 state bits tell you the 16 outputs, 24 x 16 bits of ROM

— 10 bits tell you the 4 next state bits, 210 x 4 bits of ROM

— Total: 4.3K bits of ROM

• PLA is much smaller

— can share product terms

— only need entries that produce an active output

— can take into account don't cares

• Size is (#inputs × #product-terms) + (#outputs × #product-terms)

For this example = (10x17)+(20x17) = 510 PLA cells

• PLA cells usually about the size of a ROM cell (slightly bigger)

ROM vs PLA

1482004 Morgan Kaufmann Publishers

• Complex instructions: the "next state" is often current state + 1

Another Implementation Style

AddrCtl

Outputs

PLA or ROM

State

Address select logic

O
p
[5
–
0
]

Adder

Instruction register
opcode field

1

Control unit

Input

PCWrite
PCWriteCond
IorD

MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite
RegDst

IRWrite

MemRead
MemWrite

BWrite

1492004 Morgan Kaufmann Publishers

Details
Dispatch ROM 1 Dispatch ROM 2

Op Opcode name Value Op Opcode name Value
000000 R-format 0110 100011 lw 0011
000010 jmp 1001 101011 sw 0101

000100 beq 1000
100011 lw 0010
101011 sw 0010

State number Address-control action Value of AddrCtl

0 Use incremented state 3
1 Use dispatch ROM 1 1
2 Use dispatch ROM 2 2
3 Use incremented state 3
4 Replace state number by 0 0
5 Replace state number by 0 0
6 Use incremented state 3
7 Replace state number by 0 0
8 Replace state number by 0 0
9 Replace state number by 0 0

State

Adder

1

PLA or ROM

Mux
3 2 1 0

Dispatch ROM 1Dispatch ROM 2

0

AddrCtl

Address select logic

Instruction register
opcode field

1502004 Morgan Kaufmann Publishers

Microprogramming

• What are the “microinstructions” ?

PCWrite
PCWriteCond
IorD

MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite

AddrCtl

Outputs

Microcode memory

IRWrite

MemRead
MemWrite

RegDst

Control unit

Input

Microprogram counter

Address select logic

Adder

1

Instruction register
opcode field

BWrite

Datapath

1512004 Morgan Kaufmann Publishers

• A specification methodology

– appropriate if hundreds of opcodes, modes, cycles, etc.

– signals specified symbolically using microinstructions

• Will two implementations of the same architecture have the same microcode?

• What would a microassembler do?

Microprogramming

Label
ALU

control SRC1 SRC2
Register
control Memory

PCWrite
control Sequencing

Fetch Add PC 4 Read PC ALU Seq
Add PC Extshft Read Dispatch 1

Mem1 Add A Extend Dispatch 2
LW2 Read ALU Seq

Write MDR Fetch
SW2 Write ALU Fetch
Rformat1 Func code A B Seq

Write ALU Fetch
BEQ1 Subt A B ALUOut-cond Fetch
JUMP1 Jump address Fetch

1522004 Morgan Kaufmann Publishers

Microinstruction format
Field name Value Signals active Comment

Add ALUOp = 00 Cause the ALU to add.
ALU control Subt ALUOp = 01 Cause the ALU to subtract; this implements the compare for

branches.
Func code ALUOp = 10 Use the instruction's function code to determine ALU control.

SRC1 PC ALUSrcA = 0 Use the PC as the first ALU input.
A ALUSrcA = 1 Register A is the first ALU input.
B ALUSrcB = 00 Register B is the second ALU input.

SRC2 4 ALUSrcB = 01 Use 4 as the second ALU input.
Extend ALUSrcB = 10 Use output of the sign extension unit as the second ALU input.
Extshft ALUSrcB = 11 Use the output of the shift-by-two unit as the second ALU input.
Read Read two registers using the rs and rt fields of the IR as the register

numbers and putting the data into registers A and B.
Write ALU RegWrite, Write a register using the rd field of the IR as the register number and

Register RegDst = 1, the contents of the ALUOut as the data.
control MemtoReg = 0

Write MDR RegWrite, Write a register using the rt field of the IR as the register number and
RegDst = 0, the contents of the MDR as the data.
MemtoReg = 1

Read PC MemRead, Read memory using the PC as address; write result into IR (and
lorD = 0 the MDR).

Memory Read ALU MemRead, Read memory using the ALUOut as address; write result into MDR.
lorD = 1

Write ALU MemWrite, Write memory using the ALUOut as address, contents of B as the
lorD = 1 data.

ALU PCSource = 00 Write the output of the ALU into the PC.
PCWrite

PC write control ALUOut-cond PCSource = 01, If the Zero output of the ALU is active, write the PC with the contents
PCWriteCond of the register ALUOut.

jump address PCSource = 10, Write the PC with the jump address from the instruction.
PCWrite

Seq AddrCtl = 11 Choose the next microinstruction sequentially.
Sequencing Fetch AddrCtl = 00 Go to the first microinstruction to begin a new instruction.

Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.
Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.

1532004 Morgan Kaufmann Publishers

• No encoding:

– 1 bit for each datapath operation

– faster, requires more memory (logic)

– used for Vax 780 — an astonishing 400K of memory!

• Lots of encoding:

– send the microinstructions through logic to get control signals

– uses less memory, slower

• Historical context of CISC:

– Too much logic to put on a single chip with everything else

– Use a ROM (or even RAM) to hold the microcode

– It’s easy to add new instructions

Maximally vs. Minimally Encoded

1542004 Morgan Kaufmann Publishers

Microcode: Trade-offs

• Distinction between specification and implementation is sometimes blurred

• Specification Advantages:

– Easy to design and write

– Design architecture and microcode in parallel

• Implementation (off-chip ROM) Advantages

– Easy to change since values are in memory

– Can emulate other architectures

– Can make use of internal registers

• Implementation Disadvantages, SLOWER now that:

– Control is implemented on same chip as processor

– ROM is no longer faster than RAM

– No need to go back and make changes

1552004 Morgan Kaufmann Publishers

Historical Perspective

• In the ‘60s and ‘70s microprogramming was very important for
implementing machines

• This led to more sophisticated ISAs and the VAX
• In the ‘80s RISC processors based on pipelining became popular
• Pipelining the microinstructions is also possible!
• Implementations of IA-32 architecture processors since 486 use:

– “hardwired control” for simpler instructions
(few cycles, FSM control implemented using PLA or random logic)

– “microcoded control” for more complex instructions
(large numbers of cycles, central control store)

• The IA-64 architecture uses a RISC-style ISA and can be
implemented without a large central control store

1562004 Morgan Kaufmann Publishers

Pentium 4

• Pipelining is important (last IA-32 without it was 80386 in 1985)

• Pipelining is used for the simple instructions favored by compilers

“Simply put, a high performance implementation needs to ensure that the simple
instructions execute quickly, and that the burden of the complexities of the
instruction set penalize the complex, less frequently used, instructions”

Control

Control

Control

Enhanced
floating point
and multimedia

Control

I/O
interface

Instruction cache

Integer
datapath

Data
cache

Secondary
cache
and
memory
interface

Advanced pipelining
hyperthreading support

Chapter 6

Chapter 7

1572004 Morgan Kaufmann Publishers

Pentium 4

• Somewhere in all that “control we must handle complex instructions

• Processor executes simple microinstructions, 70 bits wide (hardwired)

• 120 control lines for integer datapath (400 for floating point)

• If an instruction requires more than 4 microinstructions to implement,
control from microcode ROM (8000 microinstructions)

• Its complicated!

Control

Control

Control

Enhanced
floating point
and multimedia

Control

I/O
interface

Instruction cache

Integer
datapath

Data
cache

Secondary
cache
and
memory
interface

Advanced pipelining
hyperthreading support

1582004 Morgan Kaufmann Publishers

Chapter 5 Summary

• If we understand the instructions…

We can build a simple processor!

• If instructions take different amounts of time, multi-cycle is better

• Datapath implemented using:

– Combinational logic for arithmetic

– State holding elements to remember bits

• Control implemented using:

– Combinational logic for single-cycle implementation

– Finite state machine for multi-cycle implementation

