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It is difficult to specifically date the origin of the 
research efforts within the programming discipline 
that are directed at describing and implementing a 
language which would produce compilers. 

The motivation for these efforts stems from meta 
languages such as Backus Normal Form (BNF)l 
which attempt to describe in a mathematical nota
tion the syntax (structure) of a programming language. 
The thinking is that if a given language (FORTRAN, 
ALGOL, etc.) could be described in rather precise form, 
then it should be possible to construct a translator that 
would accept statements, say, in BNF and output the 
appropriate compiler. This processor is shown schemat
ically in Figure 1. 

The actual construction of the compiler-compiler has 
proved to be an elusive goal; the efficient implementa
tion of the theoretically possible turned out to be far 
more difficult than originally anticipated. 

In early 1966 work began at the RCA Laboratories, 
Princeton, on what has since evolved into RCA BTSS 
II (Basic Time Sharing System, Version II). During 
the design discussions for this system it was decided 
that the interactive language would be based on FOR
TRAN IV. It was further decided to implement the 
language, so far as possible, using a compiler-compiler. 
The final compiler was named FORTRAN PI and 
its compiler-compiler parent, lVIETA PI. It is the opin
ion of the author based on implementation experience 
and user acceptance that the viability of the compiler
compiler has been amply demonstrated by·the research 
effort which produced META PI and FORTRAN PI. 

Before discussing META PI it will be necessary to 

Compiler· statements (for example FORTRAN_ statements) 

l 
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FIGURE 1 

discuss BTSS II since it is the operational environment 
within which META PI functions. 

RCA BTSS II provides the on-line user the ability 
to create, modify, execute and correct programs on an 
interactive basis. The user accesses the system services 
through three main software components: 

A Command Language. 
A Text Editor. 
The FORTRAN PI compiler and META PI 
compiler-compiler. 

FORTRAN PI and META PI were designed as far 
as possible to be independent of a given control system 
and I/O package. Both FORTRAN PI and META PI 
interface with the system via an interactive executive. 

RCA BTSS II is implemented on an RCA SPECTRA 
70/45 computer system with 131K of memory. 
The SPECTRA 70/45 is a third generation computer 
system with an instruction set which is compatible 
with System 360. It does not have hardware fea
tures (paging, read memory protect, etc.) specifi
cally designed for time sharing. (The RCA SPECTRA 
70/46 does have these features, and a version of the 
PI compiler is operating on it.) 

FORTRAN PI was the first language implemented 
with META PI. A discussion of its design and the 
structure of the object code produced by it will be help
ful in providing the reader insight into the design and 
function of l\1ETA PI. 

The reader is cautioned to keep in mind the various 
possible levels of translator activity, that is, the 
initial creation of FORTRAN PI via META PI, the 
on-line creation of the user's program via FORTRAN 
PI, and the on-line creation of the user's compiler (or 
compiler-compiler) . 

During the preliminary design phase for BTSS the. 
fundamental decision was made to use a FORTRAN 
like language as the problem solving language of the 
system. Three considerations provided the framework 

. for all subsequen t design decisions. 
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First, to gain insight into the viability of compiler
compiler approaches, the implementation of FOR
TRAN PI would proceed only after the structure of the 
META PI compiler- compiler was described in detail. 
As much as possible of the FORTRAN PI compHer 
would be implemented via META PI. . 

SecoIid, trade offs would be made in the total META 
PI approach if, in implementing FORTRAN PI, effi
ciency of the production compiler would be seriously 
impaired by this approach. 

Third, FORTRAN IV standards would be adhered 
to wherever possible, but since the language was to be 
utilized in a time sharing environment, departures 
from FORTRAN IV standards would be effected wh~n· 
ever the convenience of the terminal user would suffer 
otherwise." 

In retrospect, considering the rather ambitious design 
constraints, FORTRAN PI was able to meet the bulk of 
its design objectives. Over 80% of the object code of 
FORTRAN PI is generated from META PI. The 
compiler itself is remarkably similar to FORTRAN IV 
when one considers the conflicts of user utility that 
arise when one attempts to reconcile a language de
signed for the batch user with the requirements of 
interactive time sharing. 

For example, some of the present FORTRAN PI 
alterations to FORTRAN IV are: 

1. Free field input format to both compiler and I/O 
Formatter. 

2. Format statements are optional. 
3. Recursive functions and subroutines. 
4. Arbitrary SUbscripts. 
5. N egati'Ve increments in DO loops, etc. 
6. Symbolic variable tracing, flow tracing, and 

other debugging aids. 

Further alterations are, of course, easily implemented 
via META PI. 

The FORTRAN PI compiler has the following 
characteristics: 

1. Statements are accepted and compiled a line at a 
time on an interactive basis. 

2. The object code generated is read only and is capa
ble of immediate execution. (The FORTRAN PI 
compiler is a OIle pass compiler.) 

The above characteristics are desired for several 
reasons. First, it was desired that programs be com
piled "rather than interpreted for greater run time 
efficiency. 

Second, the read only feature of the object code 
permits the executive to omit writing the code back to 
disc when each run time execution slot terminates. 

Third, the immediate compilation allows several 

important additional advantages to accrue to the in
teractive user. Among these are: 

A. The compiler can be used as a desk calculator. 
B. Complete symbolic debugging aids (the principal 

advantage of interpreters) are still available due 
to the easy access of the compiler and symbol 
table at run time. 

a. The user can symbolically alter variables in a 
running program without re-compiling or re
starting. 

D. The user can cause each program statement 'to 
be executed (incremental execution) while it is 
being compiled a line at a time (incremental 
compilation) . 

The compiler itself is composed of two sections; a set 
of subroutines which are hand coded and the code 
generated by META PI. The subroutines fall into 
two classes. 

a. Those which are not sensitive to the language 
being compiled. These routines are used by both" 
FORTRAN .PI and ~IETA PI and as such can be 
used for generating new compilers. An example of 
this class of subroutines if INUM; this subroutine 
tests the input stream for a digit string of arbitrary 
length. 

b. A set of subroutines whose generality is a function 
either of the hardware on which the compiler is 
being implemented or the particular source lan
guage itself. For example, the routine EFFI de
tects the occurrence of certain instruction pairs 
and replaces this pair with a single instruction. 
This replacement is obviously dependent on a 
specific hardware instruction set. Another routine 
FLB is used to detect valid FORTRAN PI FOR
MAT statements. Such a routine is unique to 
FORTRAN and is not useful in the implementa
tion of other languages. These non-transferable 
routines comprise less than 5% of the total FOR
TRAN PI object code. 

The second section of FORTRAN PI is composed 
entirely of code generated by META PI. This coding 
performs a left to right scan of the source text, testing 
for syntactic units exactly as specified by the input to 
META PI. The structure of the input to META PI wHI 
be taken up shortly. 

FORTRAN PI accepts source statements from ter
minal users and generates the machine code necessary to 
to carry out the intent of the statement. The compiler 
uses five regions in creating the users object program. 
These regions are created in U page blocks. A ~ 
page is 2048 memory locations (bytes); this is the 
minimum size block that can be memory protected on 
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the Spectra 70/45. The number of ~ pages allocated 
to each region is user specifiable at the time his pro
gram is created. The five regions are allocated as 
follows: 

Regions 1 and 2 

Contains the compiler's working storage, a specially 
constructed statement "table and the source program 
label table. 

The statement table is u~ed for symbolic debugging; 
it enables the user to trace his program on selected 
criterion. For example, the program can be halted at 
any st3,tement number, or the user can cause a symbolic 
printout when the value of specified variables change. 

The label table contains information on every pro
gram 1.'ariable and statement which contains a state
mentnumber. 

Region 3 

This area contains the user's compiled code. The 
generated code is "read only" and self-relocating. As a 
result the code ~ pages need never be written when 
the program is being staged out at the end of an exe
cution time slot (the maximum time slot, is ~ second). 

Since the code generated is self-relocating it can be 
used as shared code on virtual memory hardware even 
though the current implementation is on a processor 
without virtual memory capabilities. 

Region 4, 

This region contains constants that appear in the 
user's source statements and all variables that have 
been declared in COMMON statements. 

Region 5 

This area contains the value of variables not in 
COMMON, DO loop indices and the recursive function 
stack area. 

FORTRAN PI functions and subroutines are re
cursive. The dynamic memory requirement needed to 
efficiently support a recursive process is obtained from 
Region 5. Thus the actual storage 'used in Region 5 
expands and contracts dynamically during execution 
of the user's object program. 

Since FORTRAN PI is implemented in the main 
by META PI its structure, which is designed for 
efficiency in the time sharing environment, is in fact 
determined by META PI. The implication is that 
any other language implemented using META PI 
would also have this region oriented structure; this 
without any special effort on the part of the language 
implementer using META PI. 
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The full implication of the nature of the compilers 
generated by META PI will be amplified when the 
implementation of Dartmouth BASIC using META 
PI is discussed in a later document. 

META PI is a problem oriented language, that is, 
it is designed for use by individuals implementing en
tire compilers, syntax checkers, or for extending the 
capability of current compilers to satisfy special lan-' 
guage requirements. 

It has long been proposed that the structure of 
languages must be placed within the domain of the 
user; the logic is that only the user can be truly sensi
tive to his own specific needs. It is the purpose of 
problem oriented languages to achieve just this end, 
that is, they provide the user with a language that en· 
abIes him to solve problems with special structural 
characteristics that would be either extremely difficult 
or, from the economic point of view, impossible to 
solve with procedure or assembly level language. 

One of META PI's problem oriented objectives aims 
at providing the user the ability to create languages 
suited to his own needs without requiring that the user 
be familiar with specific computer hardware or the basic 
internal structure of compilers. This goal has yet to 
be achieved in its entirety, but META PI has demon
strated that the concept is feasible and thai it's only a 
matter of time before the user will be provided with the 
capability for developing his own languages just as he 
is now able to create his own programs; the only re
maining problems to be solved relate to the extent to 
which symbolics should be used within the compiler
compiler languages themselves. 

In order to define a problem oriented languall,'e it is 
first necessary to examine the characteristics of the 
problem that the language is to slove 

The language of a compiler-compiler (MET A PI) 
must be designed to solve the· problem of compiler 
generation. 

Compilers perform two basic functions: 

1. They scan input statements in order to determine 
their validity within the definition of the language. 
The valid statements within a language is estab
lished by the syntax of that language. For example 
the Dartmouth BASIC statement 

is valid 
while 

10LETX=X+l 

10LETX = JOHN + 1 

is not, since in Case 2 the variable JOHN is not 
permitted in the language and hence is syntacti
cally incorrect. 
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2. The second requirement of a compiler is the 
generation of the necessary computer intructions 
for effecting the execution of syntactically correct 
statements. This phase of the compiler implies 
that a meaning (semantics) is to be associated to a 
given statement. The meaning supplied takes the 
form of generated object code. 

A compiler-compiler then must contain structural 
elements necessary to provide, in the compiler it pro
duces, the ability both to scan for correct statements 
(syntactical structures) and also to produce object 
code. The user of such a language is freed of all the 
details that are involved in the actual generation of 
machine code required to implement the compiler itself. 

META PI uses as its basic language structure the 
META series of compiler-compilers described by 
D. V. Schorre2 and his associates at the UCLA com
puting facility. Its implementation, however, unlike 
the META series of compiler..;compiler of the UCLA 
group is intended primarily for interactlve software 
system. It has been used to generate two interactive 
compilers that are used on a production basis. 

The basic parsing algorithm of the META type 
compiler is top-down left to-right, and deterministic. 
Briefly, "top-down" means the compiler first decides 
which rule should be satisfied next and then checks the 
input (or calls new rules) according to the alternatives 
of the ru1e. A "bottom-up" parser would, on t,he other 
hand, first check the nature of the input and then 
determine which rules could be used to describe it. A 
top-down, deterministic algorithm was selected for 
three principle reasons. 

1. Coding can be generated immediately for the 
META statements as they are read in. This meshes 
with the goal of having incremental compilation. 

2. Errors are. easily pinpointed in deterministic 
parser. Backup is provided only when explicitly 
specified in the META PI language. 

3. Deterministic parsers are faster than non-deter
ministic parsers. 

As has been stated, the first requirement of a com
piler-compiler language is to provide the language it 
creates a syntax checking capability. Fortunately, 
the syntactical descript.ion of programming languages 
has been provided a powerful symbolism in the Backus 
Normal Form (BNF). 

BNF achieved its fame from its use in ALGOL '60 
but is suited for describing a broad class of languages. 
It provides an excellent vehicle for the statement 
structure of a compiler-compiler. In order to enable the 
generated compiler to syntactically test the input 
statement, a BNF description is converted by META 
PI to generated code that will perform snytactic tests 

on the input statement. Though it is well suited to the 
syntactic phase of a compiler's work BNF was not 
designed with the intent of attaching semantic me~ing 
to the statements involved. 

It is iIi the area of semantics that the major effort in 
design has occurred in the development and definition 
of META PI. 

META PI is computer program written for the RCA 
Spectra 70 that accepts the description of a language 
in extended Backus Normal Form. Both the syntactic 
and semantic functions of the compiler to be generated 
are contained within a single META PI statement. 
The output of the interactive version of META PI is 
(read only, sharable) Spectra 70 machine code which is 
the compiler for the language being"described. This out
put code is unique to a given on-line user and does not 
interfere in any way with other on-line users who are 
sharing META PI interactively. The user of META 
PI can in fact have any number of different languages 
in various stages of development; the system does not 
distinguish between programs written in FORTRAN 
PI and those written in META PI; FORTRAN PI, 
META PI and the user's compiler form an integrated 
language system in RCA BTSS II. 

The object code produced by META PI consists 
primarily of a set of subroutine calls which perform a 
recursive left to right scan of the source statements of 
the particu1ar compiler language it describes. 

META PI statements are designed to resemble 
Backus Normal Form. It was important, however, to 
extend BNF in order to include semantic operations 
(code generation) within the syntax structure de
scribing the language and to simplify the description 
of the language. Four extensions were invloved: 

1. The inclusion of factoring and the addition of an 
iterative operator. For example the BNF statement 

A:: = B/AC/AD 

becomes 

A: = B$ (C/D) 

These changes were necessary for two reasons. 
First, the use of the $ sign enables the compiler to 
identify an iterative operation immediately on 
the appearance of the dollar sign ($). This greatly 
simplifies the compilation process. Second, since 
META PI is an interactive language the $ notation 
reduces input requirements thus increasing termi
nal efficiency. Furthermore, from the purely 
descriptive point of view, it simplifies the identi
fication of proper strings defined by the statement, 
since the $ can be interpreted to me~n "followed by 
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an arbitrary sequence of." Hence the sample 
META PI statement above is read as: 
"AnA is a B followed by an arbitrary sequence of 
C's or D's." 
From just the visual examination of the string 

BCCDDDCCCDDDDD 

it. is diffi,cult to determine using the BNF descrip
tor whether or not the string is valid. With the 
extended BNF descriptor of META ,PI however 
it is immediately obvious that the above is in fact 
a valid string, that is a B followed by an arbitrary 
sequence of C's or D's. 

2. The semantics are included within the syntax of 
a statement. This allows for object code to be gen
erated as the scan of the source statement pro
ceeds; in the vast majority of statements scanned, 
the complete generation of code and end of scan 
will occur simultaneously. 

3. The ability to backup the code generation to 
some previous scan point is provided through 
special commands that are part of the META PI 
statement structure. This feature allows for effi
cient identification of those statement strings 
belonging to a language but not immediately 
identifiable on a left to right scan basis as a partic
ular statement type. Consider for example the 
FORTRAN PI statement 

DOlI = 1.5 

This statement is a valid assignment statement 
which assigns the value 1.5 to the variable DOlI. 
If the syntax analysis, however, begins analyzing 
the statement as a DO statement It WJll not be 
rejected as such until the analysis of the statement 
is nearly completed. The backup facility of META 
PI provides an efficient means for re-evaluating 
the input string as a different statement type. 
It must be noted that the backup facility is pro
vided for the scan of the source statement to the 
compiler being generated. It is never necessary to 
backup during the scan of a META PI statement 
since META PI is a deterministic language. 

4. The compiler writer is provided with the capabil
ity of generating compile time error comments 
via a special error command which is also an 
integral part of the META PI statement struc
ture. (This feature is not avaible in the interactive 
version of META PI described here.) 

Before proceeding with a discussion of how META PI 
statements are written a discussion of META PI vs. 
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BNF syntax is in order. The following conventions will 
hold: 

META PI BNF 

.. -. - .. -
/ I 
ABC <ABC> 
: ABC ABC 

In addition: 

1. A ; will terminate a META PI statement (un
necessary in the on -line version) . 

.~. () [parentheses] will be used to simplify BNF and 
will indicate factoring. 

3. A $ replaces BNF finite state recursion. 

To solidify META PI syntactical symbolism a few 
Dartmouth BASIC statements are shown below in 
BNF and META PI. 

BASIC READ statement 

BNF 

< READ statement> :: = READ < read list> 

META PI 

READST : = : READ: READLST 

BASI C read list 

BNF 

< read list> :: = < variable> I < read list> , 
<variable> 

META PI 

READLST: = VAR$ (:,:VAR) 

BASIC FOR statement 

BNF 

<FOR statement> :: = FOR <simple variable> 
= < expression> TO 

< expression> < OPTEXP > 

< OPTEX > :: = STEP < Expression> 
<EMPTY> 

META PI 

FORST:=: FOR: SIMVAR :=: EXP : TO 
EXP (: STEP: EXP / . EMPTY) 

These examples are included to illustrate the similar
ities of BNF and META PI syntax. For the purpose of 
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these illustrations an effort has been made to name 
syntactic components to convey the same meaning 
they had in the BNF statement. For example the 
BNF < expression> became EXP. 

It should again be emphasized that BNF does not 
include any facilities for including semantics operations 
within syntax operations hence none of META PI's 
semantic operations were shown. 

META PI statements contain 3 types of elements: 
1. Syntactic elements; these elements are compiled 

into code in the user's compiler that will test for 
syntactic elements in the source input to the user's 
compiler. These elements, then, are used to gener
ate the "sieve" statement identifier 01' syntax 
checker of the user's compiler. 

2. Semantic elements; the elements are compiled 
into code in the user's compiler that will effect 
the generation of object code. 

3. META syntactic elements; these elements are 
compiled into code in the user's compiler that 
will enable it to efficiently resolve possible conflicts 
(ambiguities) in the newly defined input source 
statement via a backup facility. The user con
structs META PI input statement.s by combining 
these three elements so as to produce his own com
piler. 

The general form for a META PI statement is: 

LABEL: = expression 

The left hand side is a unique identifier which serves 
as a reference to the expression on the right hand side 
(a META PI identifier is defined as a letter (A-Z) 
followed by an arbitrary sequence of letters or digits). 
For example the META PI statement which defines a 
digit would appear as: 

DIGIT: = :0:/:1:/:2:/:3:/:4:/:5:/:6:/:7:/:8:/:9: 

The name DIGIT can then be used on the right hand 
side of an expression to effect the test for a digit. 

The character pair : = serves as a delimiter and 
distinguishes META PI statements from FORTRAN 
PI statements. The reader is reminded that META 
PI and FORTRAN PI are one integrated language 
pookage. 

The expression is compiled into code· in the user's 
compiler which is recursive, that is, the expression can 
contain a reference to itself either directly or indirectly. 

When META PI generates the code for the expres
sion within the user·'s compiler it will be generated such 
that it can have one of t1u:ee results after being called. 

1. True. This results if the input scanned as a result 
of being called satisfies the expression. The called 
routine will return with a truth indicator set, the 
input pointer will be moved past the data cor
rectly scanned. 

2. False. The input does not satisfy the expression, 
in this case the input pointer wi.ll be unaltered. 
The truth will be set indicat.ing false. 

3. Error. The expression prefix is correctly identified 
but the suffix is not. For example the statement 

GO TO 20.3 

is an invalid GO TO statement. The prefix GO TO 
is (possibly) correct but the suffix 20.3 is not. 
When this occurs an error routine is called, the 
input pointer is partially updated, the error 
routine will then insert a ? (question mark) after 
the last character successfully scanned. 

These three condItions describe the behavior of the 
code that is generated in the user's compiler by a 
META PI expression. Some of the elements that com
prise these expressions will now be discussed in detail. 

Syntactic elements 

:xxx ..... x: 

ABC 

The X's represent any character 
string. This syntactic element will 
create code in the user's compiler 
to test the current input for the 
string within the colons. In the 
DIGIT statement, shown previ
ously, code would be genera.ted 
that would test for a 0 or a 1 or 2 
etc. 

This results in the generation of 
code in the user's compiler whIch 
wIll result in a call to the routine 
named (ABC in this case). This 
routine will presumably be written 
by the user with META PI. DIGIT 
defined above is such a routine; it 
could be used, for example to iden
tify a number. 

INUM: = DIGIT$DIGIT 

The name could also designate one 
of the currently existing FOR
TRAN PI routines. This syn
tactic element is one of two possible 
methods available for linking to 
subroutines within META PI. The 
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. ID 

. EMPTY 

.INT 

. NUM 

second method involves preceding 
the routine name with a period. 
When the period notation is used 
META PI will assume that the 
routine called is not recursive and 
that a truth indicator is to be re
turned. When a routine is called 
without a period recursion is then 
possible by the routine called; a 
truth value will be returned by the 
called routines in either case. 

This is the test for an identifier . 
Code is generated to link to the 
ID routin,e. N otethe use of the 
period. The implication is that the 
ID routine does not subsequently 
link to itself. 

This is a special snytactic test 
which forceS the true setting of the 
truth indicator. 

This is a test for a FORTRAN 
integer. 

This is a test for a number which 
could (approximately) be defined 
by the following META PI state
ment: 

NUM: = $DIGIT(:.:/.EMPTY) 
$DIGIT(:E:(:+ :/: -:/ . EMPTY) 

DIGIT (DIGIT / .EMPTY)/ 
.EMPTY) 

The code generated for this state
ment wiil identify numbers such as 

1.23E-Ol 

. OO137lE-15 

1.361,0123, lEI 

the definition could be read as: 

"A NUM is equivalent to zero or 
more digits followed by an op
tional period followed by zero or 
more digits followed by the optional 
sequence; E followed by an 
optional plus or minus followed by 
a digit followed by an' optional 
digit." 

The· NUM definition is relatively 

LKUP 
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simple yet it illustrates factoring, 
iteration ($), tests for syntactic 
elements and the use of .EMPTY; 
a clear understanding of these ele
ments will benefit the reader when 
other examples are given later in 
this document. 

This results in code being gener
ated in the user's compiler that will 
link to the LKUP routine; this 
routine scans the label table for the 
last input detected. Label table 
entries are statement numbers or 
variable . names. Each entry also 
contains appropriate control in
formation such as type, memory 
address and program level. The 
routine will return one of three 
possible results. 

1. The input was in the label 
table and assigned memorY 
location is defined. ~. , 

2. The input was not found in 
the label table . 

3. The label was found but its 
memory location is yet to be 
defined. This type of entry 
is caused by forward refer
ences. For example a GOTO 
statement that specifies a 
statement number that has 
not yet been entered. 

. TVPE(:NNYY:) This routine looks up "the input 
passed . ,to it in the label table and 
tests if the type byte is in the class 
allowed by the argument NNYY. 
One function of this routine is to 
check for mixed mode errors . 

.XXXX Here the X's represent an arbitrary 
identifier. The use of this notation 
will cause META PI to genera.te 
linkage to the subroutine named 
by the symbol. The execution of the 
subroutine is assumed to effect a 
test on th~ input string. The results 
of this test will set the truth indi
cator which is returned to the call
ing routine. This notation is, in 
fact, the vehicle used by META 
PI in generating linkage to those 
syntactic routines previously dis
cussed (.ID, .LKUP, etc.). In 

From the collection of the Computer History Museum (www.computerhistory.org)



208 Fall Joint Computer Conference, 1968 

addition to the symbols already 
defined, the user of META PI 
can link directly to those routines 
(written in META PI) that are 
used in creating the FORTRAN 
PI compiler; there are over 100 
such ,routines most of 'Which per
form functions common to alge
braic compilers. The META PI 
implementation of FORTRAN PI 
appears in Appendix 1. 

Semantics-Code generation in META PI 

The syntax operations permit the user who is imple
menting his own compiler to perform the statement 
identification function of the compiler being generated. 
The code generation that will effect the intent of a 
given source statement is handled by the semantic 
functions, these functions are imbedded in the META 
PI statement structure. 

The semantic functions are composed of two sub 
elements: 

1. Semantic commands. 
2. Semantic operations. 

Semantic operations are always contained within 
sEIDlantic cQmmands. The general form is 

sematic-command (semantic-Operations). 

Semantic commands 

Every semantic command has a direct effect on code 
generated by the compiler. When META PI encoun
ters a semantic command in the input statement it will 
generate in the user's compiler the object code necessary 
to generate an element of an object program. There 
are five basic semantics commands. 

.OUT(. .. ) This command causes the current 
contents of the output area (a tem
porary area where code is being 
created by the user's compiler) to 
be converted to internal form and 
placed in the user's code area. The 
output area is a staging area for 
intermediate output that is in a 
semi-symbolic form. The code area 
contains the precise object code that 
will be executed by the computer. 
The output itself (the strings that 
are entered into the output area) is 
produced by the semantic opera
tions that are speclfied within the 

.LABEL( ... ) 

.IGN( ... ) 

.NOP( ... ) 

.DO( ... ) 

parentheses (which are shown above 
as ( .... ) ). Three alternate actions 
can occur depending on the struc
ture of the semantic operations 
contained within the .OUT( ... ) com
mand. 

1. If the first character is not a 
letter or a digit, then all sub
sequent characters are copied 
directly into the code area un
til a final colon ( :) pair is 
detected. 

2. If the fourth character is a 
period or a space it is assumed 
that the output is an instruc
tion using an index register 
and with a symbolic address 
following the period or space 
located in position 4. The 
symbolic address will be 
looked up in the label table 
and from information con
tained there a real machine 
address will be generated. 

3. If the above two cases fail, 
the character string is assumed 
to be machine code and it is 
converted - directly into the 
code area. 

This takes the current contents of 
the output area and places it into 
the label table. An error results if 
the label is already defined. The 
current value of the code area 
location counter will be associated 
with the label. 

This command will ignore . ( delete) 
the contents of the output area. 
This is useful since several semantic 
operations produce side efiects, 
such as releasing registers, In addi
tion to generating code. 

ThIS command is used to produce 
the effect of the semantic operations 
without doing anything else. The 
results of the semantic operations 
will be left in the output area. 

This is a specialized command 
whose effect is to cause META 
PI to execute immediately the 
instructions contained within the 
parentheses. 
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Semantic operations 

The semantic operations are used to generate code in 
the output area. The code generated in the output area 
by these operations is in a symbolic form and not 
immediately executable; additionally these operations 
are generally constrained not to alter the input pointer 
or the truth indicator. A pointer is maintained to 
remember the next available location in the output 
area. 

This pointer is updated after each semantic oper
ation. These operations are listed below. 

:CCC ... C: 

* 

s 

R 

I 

x 

Suffix the string between the colons 
to the output area. Note that no 
ambiguity exists with syntactic 
elements contained within colons 
since this notation has unique 
meaning depending on whether it 
has occurred inside or outside of a 
semantic command. 

Suffix the current input to the con
tents of the output area. This is 
generally used in conjunction with 
a successful .ID test. To emphasize 
the different roles being played by 
META PI, the user's compiler 
source statement which is input 
to the user's compiler, and the 
resulting object code, this simple 
operation will be explained further. 
When the * is found in a META 
PI string, code will be generated in 
the user's compiler to effect the 
placement of the last input into 
the output area. This code is part 
of the user's compiler. When a 
source statement is supplied to this 
compiler the user's compiler will 
effect symbolic code generation in 
the output area. This output area 
will then be converted into ex
ecutable machine code. 

Save a copy of the current contents 
of the output area in a pushdown 
list and push the list. 

Restore (suffix to the output area) 
the top of the pushdown list and 
pop the list. 

Ignore (pop) the top element in 
the pushdown list. 

Swap the top two elements in the 
pushdown list. 

*1 
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Generate a globally unique 4 byte 
character string beginning with the 
character #. This string will be 
locally constan t and serves as a 
convenient way to label and refer
ence locations in the generated code. 

There are a set of semantics routines which facilitate 
the use of the general purpose and floating point regis
ters of the Spectra 70 processor in the output code. A 
type of pushdown list for both of these register types is 
maintaine<;l at run time. There are 6 general purpose and 
4 floating registers available to these semantic opera
tions. If more registers are needed, coding will auto
matically be generated to implement saving and re
storing of registers. This save and restore operation is 
a side effect of the following semantic routines. 

OF 

o 

+ 

+2 

-2 

Output the current general purpose 
register. 

Output the current floating point 
register. 

Output the next free general pur
pose register and make it current. 

Output the next free floating point 
register and make it current. 

Output two general purpose regis
ters. The first one is the previous 
register, the second is the current 
register. When the operation com
pletes the previous register will be 
made current. The output is always 
a digit pair. This format is special
ized to take advantage of the 
register to register operations avail
able on the Spectra 70 class of 
processors. 

Output a pair of floating point 
registers~ The action is the same as 
the semantic operation for general 
purpose register pairs. 

One final set of elements of a META PI statement 
have yet to be discussed namely the lVleta Synta,ctic 
Commands. These commands are included primarily to 
permit efficient backup facilities in the user's compiler. 

META syntactic commands 

. LATCH (name) This causes code to be generated 
in the user's compiler that will re
sult in the routine named in pa
rentheses being called. In addition, 
if the routine (or any routine sub-
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sequently called by the latched 
routine) exits to the error routine, 
backup will be affected. 

This command can occur wherever 
a semantic operator can occur; it 
causes code to be generated in the 
user's compiler that will suppress 
the occurrence of a .LATCH in the 
calling routine. This command is 
generally used when initial ambigu
ity in a sub-expression has been 
resolved. Typical examples· are 
when·the first comma is detected in 
a FORTRAN DO statement, or 
when the logical operator is de
tected in a logical IF statement. 
Backup will not. occur if a sub
sequent syntactic error is dis
covered and the error pointer will 
more clearly reflect the location of 
the error in the input statement. 

. CLAMP This command can occur wherever 
C can occur. It directs the compiler 
to suppress all preceding .LATCH's 
that are still in effect. .CLAMP is 
useful when .LATCH did not occur 
on the immediately preceding level, 
or when it is desired to inhiblt the 
PI compiler or META PI from 
later attempting to scan input 
intended for the user's compiler. 
The reaqer isteminded that META 
PI, FORTRAN PI and the user's 
compiler are, in fact, part of an 
integrated language system. 

The task now is to describe how the META PI 
elements are formed into statements which are used to 
create a user's compiler. The approach to be used in 
accomplishing this end will be via example. First sev
eral simple examples will be described. Then the en
tire META PI implementation of FORTRAN PI will 
be included as an appendix. 

EXAMPLE 1. 

FORTRAN PI allows the user to include comments 
in each statement after a concluding semicolon. If the 
user did not want this feature, but rather. desired to 
permit multiple statements on one line (similar to 
ALGOL), he could write the following META PI 
command: 

U8ERCC: = LABST.NOP(.CLAMP)$LABST 

where LABST refers to the FORTRAN PI definition 
of a (possibly) labelled statement (see Appendix). The 
meta syntactic command .CLAMP disables the backup 
mechanism, and allows the error pointer to clearly re
flect the location of a possible error in the subsequent 
arbitrary sequence of labelled statements ($LABST). 
Thus, the program segment 

could become 

X= i+Y 

Z = SIN(X) +W 

Y = Y + 10 

PRINT 1,X,Y,Z 

x = 1 + Y;Z = SIN(X) + W;Y = Y + 10; PRINT 
1,X,Y,Z 

EXAMPLES. 

There is no efficient way to shift lofrically in the 
FORTRAN IV language. A FORTRAN PI user at 
RCA Laboratories required such a shift in order to 
improve the efficiency and readability of his program 
in which he made extensive use of bit manipulation. He 
used the following META PI statement: 

USERCC : = :SHIFT~ .NOP(.CLAMP) (:L: .SAV 
(:89:) / . 

:R: .SAV(:88:)) .ID (INTV) :,: IEXPI 

.OUT(:58102000:R:103000:).OUT 
(:50102000 05E9,:- .E901) 

This permitted him to enter statements like 

SHIFTRJ,3 shift the variable J 3 bits to the 
right. 

SHIFTL K, J + 5 shift the variable K J + 5 bits 
to the left. 

Note the use of .SAV( ... ) to save the op-code of the 
shift instructions. INTV and IEXP1 are references to 
FORTRAN PI syntax. The "05E9" (BALR 14,9) 
constitutes a return to the executive and allows vari
able tracing (and other debugging aids). The fact that 
this is an assignment statement is communicated at 
compile time via the .E901 function. 

EXAMPLES. 

To further illustrate how META PI can be used to 
create new compilers, two statements from the imple-
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mentation of Dartmouth BASIC language alluded to 
later will be discussed. The BASIC statements have 
been selected on the basis of their ability to convey the 
structure of META PI statements and not on the 
simplicity or complexity involved in their actual imple
mentation. 

The BASIC READ statement 

This statement has the BNF format 

< READ statement> : : = READ < read list> 

In META PI the statement becomes 

READ: = :READ:RIDS(:,:RID):;: 

META PI will scan the statement from left to right 
generating the following code: 

1. A test for the word READ. 
2. Linkage to the definition RID. This is a definition 

contained within the META PI definition of 
BASIC. 

3. Instructions to effect iterative loop that will test 
for a comma followed by a read identifier. 

4. A test for the line termination character";". This 
character is appended to the statement inter
nally. 

This META PI definition is t~tally syntactic. The 
semantics for the READ statement are handled in the 
RID definition. . 

Handling relational operators 

BASIC allows six relational operators; these opera
tors are used within the BASIC IF statement; the 
operators permitted are: 

. !J T ( : :3 7 i'.\ : ) 

BASIC operator 

<> 
<= 
>= 
= 

< 
> 
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Interpretation 

not equal 
less than or equal to 
greater than or equal to 
equal to 
less than 
greater than 

The META PI definition for a relational is as follows: 

REL = :< >: .SAV(:7:)/:< =: .SAV(:6:)/ 

:> =: .SAV(:A:)/:=: .SAV(:8:)/ 

:<: .SAV( :4:)/: > : .SA V(:2:) 

META PI will generate the code equivalent to a 
sieve on the six possible relational operators. When one 
of the operators is detected a single character is entered 
into the pushdown list. This is effected by the .SAV 
semantics routine. This character is in fact the actual 
machine code representation of the branching condition. 
The REL definition is a sub definition of the IF state
ment. During the scan of the IF statement the char
acter previously entered into the stack by REL will be 
popped into the output area and the complete branch 
instruction will be generated. 

EXAMPLE 4.. 

The preceding example have shown how META 
PI provides a vehicle to allow user controlled genera
tion of code which may be executed later at run time. 
The following example shows that the user can also 
control the generation of code to be executed at com
pile time, that is, he can generate a compiler-compiler. 
The example shows, first, the definition of a familiar 
language called BNF. Then in the new BNF language 
a simple syntax checker is defined. Then some test 
strings are entered. 

... . . . : : : :=:::>\1 :;:.0 

23 3X1: =3X2!·(:! : .OllT( :531::. :*1) .OUT( :'0781::: )3X2) .LAEEL(*l) 

32 ~X2:=BX3.0~T(:53E.:*1).OUT(:~77E:)$(BX3.0UT(:477.E~~:)).LA3~L<*J) 

42 BX3:=:c:(:E~PTY:.OJr(:0420:)/.ID.OUr(:41E.:*).OUT(:45J.LATC:»:>: 

/srRING.OUT(~45E.TESr~).OUT(:::'R:::) 

53 3TRI~3 := ~LPHABET .SAV<.) $(ALPHABET .SAV(R*» 
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63 'LPH~SET := LETTER lilIGITI :?:I:":I:$:I:':I:X:/ETC 

7a LETTER := :A:/:J:/:C:I:D:/:E:I:f:I:G:I:H:I:I:/:J:I:K:I:L:/ETC 

82 DISIT := :2:/:1 :/:2:1:3:/:4:/:5:/:6:/:7:1:8:1:9: 

92 <SNF> ::= Z ! 1<3Nf>1 

lIZ 11Z11 

12;3 11 1 1 11 1 1 II! 1 1 1 11 1 1 1 I 01 1 II! 1 1 11 ill I 1 1 1 1 1 1 1 

ICO IjE 

1 33 lIZ 1 1 ! 

130 ERR0~ 11dl1? 1; 

133111;)11 

13:3 11Z11? 

132 
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/PRINT' 

Ul USERCC := .Nope.CLAMP) BNF :;:I:<:.ID.LABEL<*):>: u: I:: :=: BX1 

:;:. OUTe :07FA:) 

20 BX1 := BX2$<:1:.0UTe:58E.:*1>.OUT<:078E:)BX2).LABELe*1> 

30 BX2 :: BX3.0UTC:58E.:*1>.OUTC:077E:)$CBX3.0ulc:477.ERR:» 

.LABELC*1> 

40 BX3 : = : <: C: EMPTY: .OUT<:0420:) I. ID.OUTC: 41 E. :*) .OUTC :450.LATCH:» 

: >1 ISTRI NG.OUTC:45 E. TEST:) .OUTe:: :IRu:) 

50 STRING := ALPHABET .SAVC*) $CALPHABET .SAVCR*» 

60 ALPHABET := LETTER I DIGIT I :1:1:-:I:II/:$:I:%:I:&:I:'I/:C:/I)11 

I*I/ETC 

70 LETTER 1= :AI/:B:I:C: I: DIIIEI II F:I:H:I: I:I:J:/ETC 

80 DIGIT 1= 10:/111/:2:1:3:1:4:1:5:1:6:1:7:1:8:1:9: 

90 <BNF> ::= 0 r I<BNF>1 

Ul0 101 

110 11011 

120 11111111111111111111011111111111111111111 

/CODE 

130 111011 

130 ERROR 11011 1 ; 

130 111011111 

130 ERROR 101111 11; 

130 

Mter the FORTR:AN PI compiler was succeSsfully 
implemented the challenge to implement a different 
language using META PI was irresistible for two 
reasons: 

1. Since META PI and FORTRAN PI evolved 
simultaneously there was some question as to 
whether or not the generality of META PI had 
been seriously affected by efforts to accommodate 
the peculiarities of FORTRAN. 

2. Evidence had to be accumulated that would tend 
to demonstrate the leverage that can be gained by 
using the compiler-compiler approach, 

It was decided to use Dartmouth BASIC as a test 
case for gathering data to support conclusions for the 
above hypotheses. The results of the implementation 
of BASIC with META PI were startling, even to the 
author. 

With no pre-preparation of any kind the project to 
implement BASIC began on April 15, 1968. On May 6, 
1968 BASIC was available to users of BTSS lIon an 
interactive basis; total elapsed time to implement the 
language was 3 weeks. 
. The entire implementation was done interactively. 
The implementation hours for man, console and pro
cessor time are as follows: 

* Totfl,l Man Hours-9o 
* Total Console Hours-33 
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This is the time the Teletype was connected to 
the computer. 

* Total Processor Hours - Less than .1 hour 
This is the time the CPU was performing func
tions for the implementation of BASIC. 

The results have in the author's mind further 
strengthened the conviction that availability of inter
active on-line compiler-compilers such as META 
PI can increase language implementation efficiency by 
an order of magnitude and provide computers which 
the much needed capability of creating and modifying 
languages to suit individual user's own special needs. 

ACKNOWLEDGMENTS 

The author wishes to express deep appreciation to 
M. Pelligrini for his assistance in preparing this docu
ment and the examples, H. A.Freedman for his col
laboration and implementation of the Executive rou
tine, and N. L. Gordon and John Carr III for sugg~t
ing and guiding the project. 

REFERENCE·S 

1 PNAUREd 
Report 01 the algorithmic language AWOL 60 
CACM Vol 3 265 May 1960pp 299-314 

2 DVSCHORRE 
META-II a syntax-oriented compiler writing language 
Proc ACM 19th National Conference 1964 p D13 

3 ME WHITE 
A remote processing systemJor the Apt language 
Proc AFIPS current conference 
The reference list is abbreviated since both an excellent list of 
references and an excellent exposition is contained in: 

4 J FELDMAN D GRIES 
Translater writing systems 
CACM Vol 11 No 2 F~b 1968 pp 77-113 

APPENDIX 

The following pages list the actual input to an off
line version of the compiler-compiler. The off-line 
version has several ininor differences from the on-line 
compiler-compiler, and one major difference. The major 
difference is that the off-line output is a symbolic 
Spect~a 70 assembly input tape from . which the FOR
'r.RAN PI compiler is assembled, rather than the 
direct ma.chine code generated on-line. 

Some other ditierences are: 

1. "=" as statement delimiter rather than ": = " . 
2. Absence of "." as delimiter before some semantic 

operations (E2, E3, E986, E987, E1, E900, E901, 
... , E908). 
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3 .. EL is a pseudo semantic operation. It actually 
performs a test for a ; and "return"s or generates 
the "SHOULD END HERE" message. 

4 .. ERR(: .... :), when used, denotes the actual error 
message to be displayed if the preceding test fails. 

5. EFF OFF and EFF ON are special commands to 
the off-line compiler tell it to turn off and on some 
special internal optimizing code. 

6. The X semantic operation he~e is identical to the 

on-lineZ. 
7. There are several subroutines referenced but not 

defined. This is usually because they have been 
partially hand coded. At any rate, the explana
tion of all the features of the off-line compiler
compiler is beyond the scope of this document. 

Any of these FORTRAN PI routines can be accessed 
by the user (via his own compiler). 
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INTV=(.IIO,OU1(:41:+: :.)/.IPR.OUT(:58:+; :*»SUBEXP; 
RLV::( .FJD,PUT( :41 :+: ,:*)/,SPR.OUT( :5S:+: :~q )SU6EXP; 
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RLDV::(, TYJ'EC :t::~~0:) .OUT( ;41 :+; :*)/,TVPE( ;EF82t) ,UUTe :58:+; :*) )OSUl ; 
CMPXV=(.TYPE(:E~AO:).OUT(:41:+: :~)/.TYPE(:EFA2:)~OUT(;58~+: ;*~)CSUOXP; 
IEXP1=IEX~2$C;+:lTERM.OUT(:lA:~E2)/;-:ITERM.OUT(lio:-E2»; 
SEXPl=SEXP2$C;+:STERM.OUTL!3A;-2E~)/:-:STERM.OUT(:3B:-2E2j); 
DEXPl=DEXP2$C:+:OTERM.OUT(:2A;-2E2)/:-;OTERM.OUTC:2B:-2EZj); 
C E X P 1 = C E X P? $ C ( : + : • S A V ( : A : S ) I : - : • S A V ( : 8 ; S ) ) C T E R'" • OUT ( : 2 : R - 4 , • OUT ( : 2 : R "" 4 ) ),; 
B~XP1=BTE~M~(:+:BTERM.OUT(:16:-E2»; , - - - -
SUB2ST=,OUT(:47F09ED40080:R:OO:),ic:SUBRSC.DUTt:947FIOO:R)S):/.EMPTV 

.00T(:~OOO:».NOP(.EL); , 
EQST=.LATtH(OUSr'/EQ2ST; 
NEQ$T=DEC~T/LABST/ENOST/SURST/FCARD; 
EQ2ST::.LAiCH(LI~ST)/.RLATCH(IUST)/ASSTJ 
LABST=GUStl.LATC~I(IFST)/;RE1URN;:.OUT(;47F09E98:E908}IENDOST; 
OOST=:OU!;SAV(*l),INT.SAVC*: ;).16.IID.SAV(*),SAV(E981S).UUT(:41:+; 1*>:=;IEXPl 

~(lUT( :;0302000;):,:. IGNCC-) IEXP1,F.RR( :NOT INTEGER:) (:,: IEXP1.ERR( 
jNOT INTEGER:)/.EMPTY.OUT(:41:+:00001:»,OU~(;411:RE986).OUTi:45E09f22' 

---E901).LABEL(*1).NOPC.~L); -
llFS1=:IF~:C.LArCH(LSUnlX).UUT(;19:~E2).IGN(-)1 
-DEXP1(R~LOP.NUP(C»DEXPl.ERR(:NLJT AN EXP;).OUT(129:-2E2).lGN( ... 2»):): 

.ERR(:MIssiNG ):>.OUT(~~8E ;*1).UUT(:47:R:09034:)L2ST.~R~(:NOT A ~TATEMENT; 
- ).LA8ELC*1); , 

GUST=;GUTU:C.lNt,OUTC:58E :*>.OUT(:47F0904C:F o 02)/,(:.OUT(:58E :*1).OUT(:05;+: 
E: >.OUT(:4120000141F090 /fC: )COHn.ERR( :NOT AN INTEGER~ )$(:, :GOJNT,ERR , 
( : NOT A t~ I N lEG l: R : ) ) : ) : .E R f< ( : MIS SIN G ):), 0 U T ( : 4 5 tOt) 0 1 8 : ) • LAB E L ( * 1 ) • (J P T ( : I : ) 

~Expi.uUT(:07F2 :--E902».NOPC.EL); ,. 
END~T=:ENU;:.UltIC:47F09038IE900)ENasn.'ERR(;UNTERMINATEO 00 LOOP;») 
ENOUST=:CUNTINUl;;.OUT(:O~E9:~9001/CA(LST/LIFST/C~T/IUST/;.: 

(:UU1(i.STRJNC.OUT(*E900)/:1AB~L(:,STRING.LAB~L(*»::):; 
ST::!NOP(C,(.LATCH(CCST)/~UOEND~lNT,LABEL(*): :C.EQUAlSCEQZST)1 

ENDOST).ERK(:INVALIO DU ENO:) 
DOGEN}: :(.lQUALSCEQST)/NEQST)/:a:BODLST/.INT,lABEl(*,::,ERR(:BAD LABfl:> 

(.EQUKL5(EQST)/LABST)/FCARDI.EHPTY: I.E~R(:DAD (ABEL2»;IGN()~IGN().IGN(); 
FCARD=(:F' :1:l:X;ERNAL:)' ".' 

.ID.EKR(!SAD LABEL:)CALLSBS(J,:.ID.ERR(:SAD LA8EL;)CALLSB),NOP(~EL); 
L2ST=.EQUALS(~Q2Sr)/LABST; 
IEX~2=:-:iTERM.UUT(:13:0FOF)/:+:ITERM/ITERM; 
SEXP2=:-:~TERM.UUT(:33:00)/~+:STERM/STERM; -
DEXP2=:+:UTERM/~-:OTERM.OUT(:33:00)/DTERM; 
BIEKM=BPRIM$(:*:BPRIM.OUT(:14:-E2»; 
ITERM=IPRiN$(:*:lPRIM.OUT(:181;OF~2).IGNC~).OUT(;lCO:OF:1620F:l:)1 

:/:.sAV(O~)lPRIH.OUT(:180:R:8E0000201uo:or),IGN(-).OUT(:lS:OF;l:»; 
STERM=SPRlM$C:*:SPRIM.OUT(:3C;-2EZ)/:/'SPRIM.UUT(:3D:-2EZ»; 
OTERM=DPRiM$(:*:DPRIM.OUTC:2C:-2E2)/:/;OPRIM.DUT(;2D:-2E2i); 
CEX~2~:+:tTERM/:-:CTERM.OUT(:33:00:33;XX)/CTERM; , 
CTERM=CPRiM$«(:*:.SAveXX)CPRIM/:/:.SAveXX)CPRIM.OUT(:45Eo9BOCO:XX;O:» 

, ,OUTt;45tO~BBOO:R:O :-2),IGN(-2»J ' " 
SUBtXP=SUUSCL .OUT (: lE: OF: 1: ) I. ENPTV; .
OSUBXP=SUBSCL~OUTe:1EII1E;OF:1:)/.EMPTY; 
CSUBXP=SUUSCL~O~Te:1EII1E1IIE:OF:ii)/.~MP1V; 
ASS 1 = • I 0 ( 1 NT V l : = : • E t{ R ( : E X P f C T l: 0 = HER E I ) C • LA T C H ( I t X P 1.) • 0 UTe : 50302000 : - ) / 

t.RLATtH(StXPl)/.RLA1CHCDEXP1)/CEXP1.lGNC-2».UUT(:45E69E60500Q2000 :-2»/ 
kLVL:=;.ERR(:~XPECTED =HERE:)(RHIEXP/ 

.LATCHCSEXPl)/.'RLATCH1DEXP1)/CfXP1.IGNC-2» 
• ERR ( : NOT AN EXPRESS J ON; ). UUT C : 70002000 ; -2) IRLDVL: =: • ERRC : EXPECTED .= HERE:) 
, (RHIEXpi.lATCHCDEXP1)/CEXP1.IGN(-2» - , 
.ERR(:~OT AN EXPRESSI0NZ).DUTCi60002000 ;-2)iCMPXVL:=:,ERR(;EXPECTED = HERE') 
, (RHI~XP.UU1(:2F:+20)/CEXP1).ERRC:NOT AN lXPRESS10N:)' 
.OUT(:6020200sor~02000 :-2-2».OUTe:05E9 ;-E901),NOP(.EL~; 
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A-2 

RHI~XP=.lATCH(ItXP1).UUT(;lH0345E09~OO :-+2); 
J f S 1 = : IF: ( ; ( •. L ATe H ( H: X P 1 ) v 0 U T ( : 1 2 22 : - ) I ( • f'L ATe II ( 5 E: X r 1 ) / DE X Pl.) 

, , .E:RR(:BAD l:XPRESSIUN:)~OUT(:3200 t-Z»U:END.f:RR(;HISSING );); 
BUOlST=.DUF.NO.INT,LABEL(*): :BASS1Cl)OGEtO/(,un.LA£3El.(';Q: :/: ~ )(,EQUALS 

(B~SST)/bIFST); , . 
o U G L~ N = !, ( • l) UI ( : 4 1 ~ : RE 986 ) • U U T ( : 4 1 2 : R I ) • 0 U r ( : 5 BE: K ) • 0 UTe : It 5 F- 09 E ') C : [ 903 ) • M 0 R E:: DO ) ; 
C C S I = (: : I • EM P T Y ) (-, LA T C It ( uc C ) / • I D. LAB E.l ( * ) : : = : • NOP ( C ) C C X 2 $ ( : / : • UU T ( : 078 A: ) 

CCX2):;:.llUl(:O"FA:»; . ,-' 
CST = ( : F L IJ \'i n N : • S A V ( : 02 8 : ) / : f L (j ~~ 0 F F ; • S A V ( : 02 C : ) / : S T LJ P : • S A V ( ; 038 : ) / : P AU S l : • 0 I,J i ( 

:9210HOOO: ).SAV( :Ot't: )/1CI;;Sl' " 
.00T(:45~09:KE900)~NUP(.EL)/NICEST; 

SUBST:( :SlIBROUT!NE:I:SLlBR,: ).ID.ERR( :lNVAkIO ~IA~'E; ).OUT( :47F09038;E900)SUlIRSAe 
~UB2ST).OUT( :O~E9:); 

III S 1 ::. ( A L G 'lOS T / . 
« (:t~EI\D(: .SAV( :OlU: )/:\AJRITE::(: .SAV( :()OO:) )IEXP1.ERR( :NJT A.N INTE::GER:):.I: 

.INT(H.B).I:RK(;AAD FURI'lAT lABEL:),.SAV(;581 :*>;):.E:RIU:MISSING ,;)/ 
(:PRiNr: .SAV( :000: )/:READ: .SAV( :018:) " 

(.INT(FLB).~AV(:581 :*)/.lMrTY.SAV(:4110B02C:».OUT(:lF2:~».OUT(R).OUT(:5BFoU 
iR).oui(:O~Et :-).orT(;J:)(IOSlQ$(:J:IUS[Q)/,E~PTY) -' 

,OUTt :'t5f:OfOOC:)/ 
( : R E WIN [) : • !> A V ( : 008 : ) 1 : B I~ C K SPA C t : , S A V ( : 00 C : ) ) 1 EX Pl. ERR ( : N J TAN I NT l: G E R : ) 

.OUT(:~BFOb00045~Of:R: :-»).OUT(:05E9:E900),NOP(,EL); 
GUINT=.lNr.our< :lF32: ).ULJl( :58E p~).fJUT( :O?2F:); - ' 
LsutilX=IE~Pl(KELOP)lfXP1; 
RELlIP=:.: (:LE: .~AV( :3: )/:£Q: ,S/l.V( :7: )/:NE: .Sf\V( :9: )/:(;T: .SAV( :[); )/:GE:: .SAV( :5:)1 

,- : l T : • !) A V ( : b : ) ) , £: R k ( : R ADD PER A 1 (J R : ,) ; • : t [R R ( : 5 H (j U LOB EAt : ) 1 : < ; • S A V ( : rj ; ) 

/:=:.~AV(:7:)/:>:.SAV(:D:); ,. - ' , 
BAS S T = • I 0 ( I NT V L / R l V L ) : = : • t: R K ( : S H 0 U L () B E =;) 8 E X Pl. l:: R R ( : NOT B J 0 LEA tH ) , U l) T ( : !> () 3 0 

200005E9 %--E901).NLlP(.El); • 
SUBSCL=;C:GJNUlX.ERR(:NUT AN ARRAY:)IEXP1.ERR(:Nor INTEGER EXPRESSI0N~) 

(~q[XPS)/.)OUT(: 180:0'r :45EOE064 :-):); ,ERRe PllSS1NG );); 
B P RIM::: • C He ON .Ull l( : 58 : + • C 4 G EN) / ( : • FA L S E • : 1 : 0: ) • DU T ( : 1 F : + 0 F ) / 

.Rcnr~s'T .UUT,C :5a:+.BCGEN)/:-':IJPRH1.UUT( :57:0F:0I301C:)i 
( : • TRUE, : 1 : i : ) . UU T ( : 48: + : 0 B Ole: ) / : ( : B l: X P 1 : ) : • ERR C : MIS ~ I \~G ):) I 

.ID(INTV/KLV).OUT(:58:0F:O:OF:OOO:El); . 
CAL L S l' = : CAL L : ( : (. H fI It H: I I;: X P 1 : ) : • (; R IU n.q 5 S H l G );" II U T ( : 0 h 0 1 : - ) 1 

.1~CAlLSB.SAV(*)(:(:PLISl :):,ERR(;EXPECTEO ):) 
/PLIST) .UlrJ (:58F :R» .UUT( :05EF:E90 / .. ) .NOP( .EL); 

ICE ~ T :: ( : T RAe [ : ( : 11 N : • S /\ V ( : 0 It It : ) 1 : 0 F F : • S A V ( : 04 8 : ) ) I ; 0 lJ M P : • S A V ( : 0 3 c.: : ) 
/:PDUM~): ,SI\V( :040:) )PlIST; -

IPR1M={PRl.; 
S P R i ~, = S P R i $ ( : t.' * : ( . L ATe II ( I P R I ) • 0 U T ( : 1 80 : 0 F E 2 ) • I G N ( - ) • 0 U T ( : 45 E 09 F BE 0 ; 00 : 1 : ) / 

. .OUT ( : 45tO'iFOIIO: 00:).: ) SPI{ I. OUT ( : 3C: -2: 45E09FtCO: 00: 1: »); 
o P R H1:: D P R 1 $ ( : ;:n;,: ( • L i\ T C H ( I P R 1 ) • D U T ( : 1 80 : 0 F l2 ) • I G N ( ~ ) • 0 U T ( : 4 5 ~ 0 9 F B EO: 00 : 0: ) I 

.oUTi:45t09F040:00:0:)UPKI . 
~ERR(: ILLEGAL tXPONENT:) ,[JUT( :2Cl-2:45E09FCCO:OO;O:»); 

CPRIM=CPRi$(:**~.UUT(:45E09CBOO:XX:O:).SAV(XX)CPRi,UUT(;4~E09~BOO:R:O :-2).IGN 
( - 2 ) • (H) T ( : 't 5l 09 C £> (, 0 : X X : 0 :»;' - . 

IUS£:Q=:(:~nLJT(:!>8E :*1,.DUT(:05:+:Eln;+:1:)$.LA-CH(PARCOH).lD.IIDtOLJT(~'1f :*> 
• S A V ( [ '-J U -, S ) • (Ill T ( : 4 1 1 : r,~ E 9 8 (, ) • U U 1 ( : It 5 E 09 t F C 1 8 1 : 0 1-: : - )" ' 
~ 0 l) T ( : 0 7 A : () F : 0 7 r- 1 : ) • L 1\ 1.3 E L ( ::( 1 ) , S A V ( :~ ) : = : • I;: R F: ( : t X PEe '1 f:. D = HER E : ) • N 0 P ( • C L A t1 P ) 
I E X Pl. t; R R ( : BAD E X P R F. ~ S 1 [l N : ) • () U T ( : 5 () : 0 F; : R ) ~ I G N ( - ) : J : ~ r. R R. ( : ~l r s SIN G ,;) 
1 EX Pl. t:, R R C : BAD E X PRE S S I ON : ) ( : , : 1 EX Pl. F; R R ( : fl AD f:: X PRE: S S I UN: ) 1 • E. r", P T Y 
~OUT( :/t1 :+:00001:» .UUl (:1,,11 :Rf:986) ,(JUT(; ItIO:Of: :-) .()UT(: 181- :OF: :-) 
, • nUT ( : 90 r 0 1. () 0 0 0 51 : 0 f-=: : - ) : ) : • E. R I~ ( : i11 5 S r N G ):, 

1 • S A V ( : 0 : S ) I IJ P '~R AM. (J lJ r ( ; '+ 5 [ Q 9 [ 86 : ) ; 
PARCO~1= 1 U!:)EQ: J :; 

I N T V L = • T Y P E ( : r F It 5 : ) • LEV l • ERR ( : I. E F 1 S' I D [ I S F lJ ~ 1 C T 1 UN: ) , D U T ( ; 4 1 : + : 0 DO 30: ) lIN TV; 
RLVL=,TYf)f( :FFC5:) .LEVL.EP.R( :lEFT SIDE IS FUNcrllJN:) ,Dl'T( :41:+:00030: )/f?LV; 

R L 0 V L :: , T Y P E ( : 1- F 05 : ) • l. ElL. E P. R ( : l. [ r T SID E I S F U f'l C -n UN: ) • [J U T ( : it 1 : + ; 0 DO 3 0 : ) , R.l D V ; 
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c: N P X V L :: _ T Y P f.: ( : F f II ~ : ) • LEV L • £: R h ( : L [ F 1 SID I: I S F lJ NeT IlJ N : ) • 0 U T ( : 4 1 : + : 0 DO :3 0: ) ! C ~1 P X VJ 
R J F S T == : 1. F ( ! B [ X P ). • E R k ( : NC T B U U L E l'l. N ; ) • 0 U T ( : 1 2 2 2 : - ) i FEN 0 • ERR ( : S H nUL 0 B t: A');,; 
IFEND=:) :'.INl.U{R( :j"U"j AN' 11~TEGER; >,OUT( :41F0904C: );OUT( :~aE :*).DUT( :O-'4F:) 

: , : • l ~~.I~ { : I~ j S!> I N G ~:). I NT. E j{ R ( : N D TAN I NT (:: G E R : ) • 0 U T ( ; 58 t: : * ) . U u 1 ( : () 7 C F : E 3 ) 
:,:.l~~{:r'11S~ING ,:).Ir~T.F.'{K(:NfJr AN INTEGER:)~Ol.JT(:S8E :*~.UUT(:()7FF:t3 
E(02).NUP( .l.L); 

CCX2=~CCDtccx::n .UUT (:;)~H:. :*1) ,OUl (:077E: )$(CCO/CCX3.0UT( :47-(.ERK:» 
.LAUF.LP:'·ll90); 

N 1 C f:: S T:: ( ( : r:: X E cur f: : .. DO ( ; S R (;,8 : ) / ; S A V E ~ 
(.unc :LA 8,30:) :Sl1UPCr.:; I.DU( :LA b,B:) ;lJnJECT: I.DU( ;LA 8,44:) .OPTC .EMPTV»I 

: S QlH: E l E : • on ( : L /\ A, 16 : ) I : CALC; .. OPT ( : l) LA Ti:JR : ) • DO ( i L A8, i 6 ; ) , 
.DP I (,Ei"lPTY» .OPT(UNOFF) .OPl'e .E~·lPTY) 
I:BATCH:.OO(:LA A,Z/i:»;;:.ERR(:SHOUL.DtND HEREl),DO(:L 1,SAVSTK;) 

.DO(:EX 0,~"+8(B):).O(J(:B *+56".DD(:USIN('; SlACK,l;) 
~ [) U ( ; n 1- S ~J, 1 : ) • f)[1( : N I S \-1" 2 5't ; ) • 0 (J ( ,N I S \~ I 253 : ) • 00 ( ; 0 1 !) tv I 2 : ) 
; DtJ( : t-U <.: L HJ E, 251 : ) • Dn ( : U I C LIN E 14; ) • DO ( fLJ I ,C LIN t, 126; ) . 
~DO(:Cli SW,131:).OU(:NI S~1/12/t:) - , 
~ n n ( : N i s W, 1 2 7 : ) ~ 0 [J ( : 0 I S \.J, 1 2 H : ) • DO ( : N I S W, 1 2 5 : ) • D J ( : DIS \'J I 1:3 0 : ) 
. " 0 U ( : DR 0 P -1; > • DO ( : S P M 2: j; 

A L. G 1 Cl S T ;.: ( : RE h D ( < : • S t .. V ( : () : , / : f-' R I IJ T ( < : • 51\ V ( : It : ) ) • (l U T' ( : 580 : * 1 ) . 
,OUT(:~OOOL00"5000C06C~).OUT(:~8fOU02:R)rWORDC$(:,<:PWOR6c) 

• 0 LJ T ( : 1 r t.: E !> 0 L: 0 L 06 : : n.5 H I:: 0 C 0 (> C () 7 r 9 ; E 900 ) • l /\ BEL ( * 1 ) : ) : • ERR ( H1 r S 5 I N G ):). NO P ( • E L ) ; 
URG f~lGIUS1+14 FUR Tfd)l.,E CE:NERATION ONLY 

CPR~=.lATLH(CtLLMF)CExrl:):.OUT(:4~EOY:R:O:X~:O: )1 
XCON(:, :XCflN.(:RR( :NUT I~ r~U~W[R: )/,Ei"',PTY.UUT( %2F:+20»1 

.L/l.Ttil(XCDNSf;I:(:C[XP1:):.£:Rr~(:~H!)SIN& ):)1 
- .10(CMPXV.UUT(:68:+2:0:0F:00068:+2:0:0F~OOB :-)/,TYPf(:F5A5:)FCN 

• S A V ( R S ) • U U T ( : 68 : 'i' 2 ; 0 : R: 030 (,8 : + 2 : 0 : fU 038 : ) II.) P RID. [) U 1 ( : 2 F : + 2 0 ) ); 
D P,'R 1 = • L l'~ T C H ( F.l: U-' F ) 0 t X P 1 : ) : • uuq : tIl S SIN G ):). 0 U T ( : I~ 5 EO') F ; p. () 0 : 0 : ) i . L ATe H ( A 8 SF) 

DE X P 1 : ) : c un\( : HIS S I :.~ G ):), 0 U T ( : 30 ; 00 ) I XC [) N! ! ( : DE X P 1 : ) ; • ERR ( : MIS SIN G );) I 
• 1 D ( Dr Pin) • t R R ( : B fl 0 TY P l : ) ; . 

DPRID=RLnV.OUI( ~68:+2:0:0F:OOO:tl).IGN(-)I.TYrE(;F585: )FCN 
.OlJrC:6i$:+2:0:R:030:)1 -

R LV. ~ A V ( : 7 b :'+ 2 : 0 : 0 F : 000 : r.: 1 ) • LJ U 1 ( : 2 F : 00 ) • 0 U T ( K: : - ) 1 • T Y P E ( : F 5 C 5 : ) ( FeN) 
,[JUT( :?F:+"LO:7fj:O:O:P,:030: )/ITURD; 

S P R 1 ::. , L f~ T t. II ( [ L E 1'1 F ) S L X P t : ) : • t R K ( : ~H 5 5 I N G );). 0 u T ( ; 4 51: 09 f : ROO ; 1 : ) I 
- .CHCGN.OUT{:IB:+2.C4GEN)/.BCUNST,OUT(:78:+2,SCGEN)/ 

_ '. i~J U t-' • U U I ( : -( d : + ? • N G [ N ) 1 : ( : SEX P 1 : ) : • ERR ( ; M I ~ SIN G ):) 1 
" .• If,TCHetIHSF)SEXPl.:): .UUlC :30:00)/, IU(SPRID); 

I P R 1 :: , I NT. fJ U T ( :- ~ R : + • I G £.: r~ ) I • C He (J N • 0 U T ( : 5 a : .... C It G EN) 1 
- .BCUNST~OUT(:SB:+.RCGEN)/:(:IEXPl;);.ERR(:MiS$ING );) 
r.lA)CH(~n~F)IEXP1: ):.ERR(;MISSING );)~OUT(:lO:OFOF) 
I.II)( INTV.lIUT( :58:QF:O:OF:OOO:El)!.TYPE( :F54!>: )FCN.ouT( :58; ... :O:R:030;»; 

M 1 E X P S = : J : I E X Pl. f R R ( : NO 1 Hn f: G E R [ X PRE S S HI N ; ) 
tMIEXrS),OUT(:1BO:OF:05EE ;-)/.EMPTY,OUT1:41E09F4E1Fll:R); 

SPR 1 D=R LV. (JUT ( : 18: +2: 0: OF: 000: E 1) , I GN (-) I. TYPL ( : F!)C 5: ) FeN, OJT ( : 78: +2; 0; fU 030: ) I 
I10KO; . 

ITO~D=(INTV.OUT{ :,SQo:or:ooo :[;1-'1 
• T Y r t e : F , I. ~ : ) ( FeN ) ~ U U T ( : 5 800 : Po : 030 : ) ) • [J U I ( : 4 5 E If I T J R : + 2 ) ; 

FCN=.SAV(~):(:PLIST:):.ERR(:MlSSING ):),OUT(:5~F iR).UUT(:O~Ef:t904),SAV(;1:) 
/ • f:: H P T Y , LEV L • t; I< k ( : EA. D F l)N C T I LIN C i\ L L ; ) , S A V ( I : D: ) ; 

P L I !> T :: • U U r ( : 5 U : + :·0 0 0 0 0: ) • S A V ( 0 r ) • U U T ( : 't 1 : + : 0 : F, : 0 3 (,; : ) 
( P A f~ " n 2 • S A V ( : 0 : ) $ ( : 1 : PAR /1.111 • E K R ( : r~ U 1 A P" F. A M E j E R : ) • S A V ( I : 4 : ) ( : , : PAR A HZ 

,ERR( :hnT A P~R/\HE1[:h:) .~AV( I :0: )/,EUPTY» ,OUT( :C)660:0~:OO:R)/ .. Et1PTY 
.Q0T(:~~lo:or:oou: ».lGN(-).IGN(-)j 

'" B S f- = : 1\ B S': ,u r I ( : F : ) : { : _: . . 
ELENF::( :SqHT: ~SI\V( :0(0: )/:SIN: .SAve :[40; )/:COS: ,SAve :ECO: )/( :LOG:/:ALOG: ),SI\V 

( : () 4 0: ) / : f. x p : ~ 51\ V ( : C C () : ) I : /\ T Ar~ :. S A V ( ; C 60: ) I : 1 AN~{ : • S h V e : F 40: ) ) • uP T (.: r : ) ; ( : ; 
X C [) N S T = : ( : D I': X F 1 : , : • :~ 0 P ( C ) D E X P 1 , r.: R K ( : NUT A N E X V) n. E: 5 !) I [) I'J : ) : ) ; • ERR ( : ~1I 5 SIN G ):); 
XCUN~.DNUM~OUI (:6B:+2.0GEN)/.C~UCUN.OUT(:6B:+2.CBGEN)/.BaCO~ST 
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.UU1( ~6u:+2.BaGEN)/; .PI: .OUT( :68:+2:09DFO:); 
PARAHl=.S~V(,:4:~)PAkAM; , 
PAR 1\f·12 = • S (" V ( :, ti : !) ) PAR A t·1 • u\rr< : '+ 1 ; 0 F ~ 0 : 0 f ; 008 : ); 
eEL EMF = ( :!) Q R T : • ':> A V ( : C 90 : ) I : SIN: • S A V ( : coo: ) I ; CDS: • ~ A V ( : C 0 8 , ) 1 ( : LOG I 1 : A LOG: ) 

• S A V ( : C B 0 : ) / ( : r;j A G : I : A B S : ) • S " V ( : C 14 : ) I : A R G ; • S A V ( : C 2 C : ) 1 - , 
: EX P : ~ S f~V ( : (; 6 (): ) I : A TAN: • S A V (: U 3 A: ) 1 : TAN H : • S A V ( : [) 0 2 : ) ) ; 0 P r ( ; F : ) : ( ;, ; 

IJ N 0 f F = aJN i 1 : n t- r : , D U ( : L A 8 J 4 ( 0 J 8 ) : ) ; . '. -' 
ceo:: ( : .. OUT ( : / : • 1 G N ( : • OUT ( : 92 F f 900 A : ) ) $ ceo 1 : ,) : , OUT C: 05 E 9 : ) 1 

;.LABE({:$~c01;):.UUT(:45E.lABE:)/:.DO(:$(.SR.UUT(*):::):):I:,OPT(;CCX1:):1 
: • S A V (: $ (,; C U 1. : ) : • 0 U T ( : 4 !j E • S A V ; ) / :, N Ll P ( : $ ceo 1 : ) :; 

ceo 1 = C C U S ~J B • 0 U T '( : it 5 E. : * ) 1 : C : • LJ U T ( : 920 15000 : ) / • S R , U U T ( : 05 E 4 : ) • 0 U T ( PI : # *: : : ) : : :; 
EFF OFF ' ,..... 

CCOSUB=:*l:/:R:/;I:/:+2:/:+:I:S:/:-.2:11-4:1:-:I:X:/:OF;1:0:1:*;/:#:/'; .. :,10; 
EfF ON ' 
C C X 3 = • 10. UU T ( : 41 E ~ : * ) • [) U T ( : 0503: ) / 4! SR. OUT ( : 45 E • T f. S T : > • flU T ( ; # : 1# * ; : : ) : c : 1 

, : ( : C C Xl: ) : / : • E r'l P T Y : • 0 U T ( : 0 '+ 20: ) / : $ : • LAB E L ( * 1 ) C C X 3 • 0 U T ( : !) 8 C. ; * l ) • U U T ( : 078 E : ) 
.DUT( ;0420: )/:.LATCH( :.lD.DUT( :41E. ;~c).OlJT(·:4!)O,LATC:): ):1 
:.TYP~(:.SR~OUT(:4~E.TYP:).UUT(*)::::):1 .. 
:.:.ID.OUr(~45E.:*);' , 

C C Xl:: C C X 2 ~ ( : / : • UU T ( : 58 E • : * 1 ) • our ( ; 078 t • ) CC X 2 ) t LAB E l, ( * 1 , ; 
FCNS1=:~UNCTIUN~.lD.ERR(:INVALIU NAME:)~OUT(:47F09038:E900)FC~SB(SUBZSr) 

.OUTt:45fO~~BE:.X2)J ' 
SUBV=.TYPl:( :l!>O!>: ).(JUT(:58:+: ;*» 
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