THE TREE-META COMPILER-COMPILER SYSTEM:

A Meta Compiler System for the Univac 1108
and the General Electric 645

C. Stephen Carr
David A. Luther
Sherian Erdmann

University of Utah

This research was supported by the
Advanced Research Projects Agency
of the Department of Defense and
was monitored by David A. Luther,
RADC, GAFB, N.Y. 13440 under
Contract No. AF30(602)-4277.

FOREWARD

This interim report describes research accomplished
by Computer Science of the University of Utah, Salt Lake
City, Utah, for the Advanced. Research Projects Agency,
administered by Rome Air Development Center, Griffiss
Air Force Base, New York under Contract No. AF30{602)-4277.
Secondary report number is TR 4~12. . Mr. David A. Luther
(EMII0O) is the RADC Project Engineer,:

This technical report haé béen reviewed and is
approved.

Yo H Aot

Approved: DAVID A. LUTHER
Project Engineer

TREE META

ABSTRACT

Tree Meta is a compiler-compiler system for context-
free languages. Parsing statements of the metalanguage
resemble Backus-Naur Form with embedded tree-building
directives. Unparsing rules include extensive tree-
scanning and code~generation constructs. Examples in
this report are drawn from algebraic and special-purpose
languages. The process of bootstrapping from a simpler
metalanguage 1s explored in detail.

This report is based on an earlier one by D.I. .
Andrews and J.F. Rulifson of Stanford Research Institute
which described the SDS 940 version of Tree Meta. The
Tree Meta system described in this report was bootstrapped

from the 8DS 940 with a minimum of hand coding.

TABLE OF CONTENTS

Introducticn . . . & ¢ + & & & ¢ o s ¢ & s 4 s+ s« + « . 2100
1. Some Definitions. « « « « ¢ o« « o o« « « 2 « « « . 2100
2. Design Standards and Scopes + « + + + v s o+« « . 101
3. Compiler Writing Schemes. « o« o+ o« + « o s + o + o+ 102
4. Top-Down Parsings « o « + « s « s+ o o & o« « « « » 103
5. Tree Meta Input Language- + « s s+ + s s o s s o« o 2105

Basic Syntax + + s+ + s s+ s ¢ & s 4 s v s v s v v » s o» 200
1. Syntax Rulese +« « « « « « +« « « &+ s = s+ + « = « o« 2200
2., Parse TIreEsS - » s + o5 o« = s o s s s o = 2 » « « » 2203
3. Unparse Rules « + =+ s o « + o s o o s s s o « 2 o .207

3a. OQutpute o o » o s ¢ 5 o 3 ¢ v s s x s s s .207
3b. Node Testing: + - « ¢ « o & o v o « « o o+ & .209
3¢, Out—ExpressionS e e s e m e e s s e e e« « 2213
4, Additional Features =« + « = « = s+ « o o s+ » « + o+ 2216

Formal Descriptign e st e e e o s+ 8 e & e e o 2 e « = w300
1. Programs and Ruleges » « = =+ » + « = 2 &+ & o+ s s s .300
2. EXpressionsS -« = s « s s o o 5 s s s o s s+ e e + + 2302
3. Elements of Parse Rules + + « s « = o s &+ « » +« » +303
4. Unparse RUles s « ¢ & o ¢ o« « « 2 o o s « o « o » +307
5. Unparse EXpresSsSiOns « » « s« = « « o s = = « « « » -309
6. OutpUL. - - « « .« 4 4 4 e v a4 e e s e s s o« . 4313

Program Environment. . . . o o o 4 « 4 s + s o+ o« » .« 400
1. Input Machinery . +« « v o s o o o s o + s« o« « » o« 4400
2. Stacks and Internal Organizations403
3. Output Facilities o v ¢ v v o o« o« « « o« o J407

A Detailed Example . . . & . &+ ¢« v « 4 « « 4 o« « +« « . J.500
1., Compiler Specifications . . . ¢« ¢ v v v o « « o+ . 500
2. The Generated Compiler. . . .+ + « ¢« « &+ + « « o + .303
3. Example Language Statements . . .« + 4+ « « 4+528

BIBLIOGRAPHY

APPENDICES
Appendix A: Utah Tree-Meta Control Cards
Appendix B: RADC Tree-Meta Control Cards

Appendix C: Error Codes . _
Appendix D: Tree-Meta Specificatlons

TREE META

INTRODUCTION

1. Some Definitions

Terms such as "metalanguage” and "metacompiler”™ have a
variety of meanings. In this report "Language," without the
prefix "meta," means any formal computer language. These are
generally languages like ALGOL or FORTRAN. Any metalanguage
is also a language.

A compiler is a computer program which reads a
formal~language program as input and translates that
program into instructions which may be executed by a
computer. The term "compiler" also means a listing of
the instructions of the compiler.

A language which can be used to describe other languages
is a metalanguage. English is an informal, general meta-
language. Backus-Naur Form or BNF (NAURL) is a formal
metalanguage used to define ALGOL, BNF is weak, for it
described conly the syntax of ALGOL, and says nothing
about the semantics or meaning. English, on the other
hand, is powerful, yet its informality prohibits its
translation into computer programs.

A metacompiler, in the most general sense of the term,
is a program which reads a metalanguage program as input
and translates that program into a set of instructions.,

If the input program is a complete description of a formal

language, the transiation is a compiler for the language.

100

~

Syntax and Compiler for

Semantics i Language X
Rules for Tree Teta expressed in
Language X Fortran

J

2. Design Standards and Scope

The broad meaning of the word "metacompiler," the strong,
divergent views of many people in the field, and our restricted
use of the word, necessitate a formal statement of the design
standard and scope of Tree Meta.

Tree Meta is built to deal with a specific set of
languages; namely, those which are strictly context free

in the formal sense. There is no attempt to design

universal languages, or machine independent languages,

or any other goals of many compiler-compiler systems.

Compiler-compiler systems may be rated on two almost
independent features: the syntax they can handle and the
features within the system which ease the compiler-
building prdcess.

Tree Meta parses context-free languages in a top

down fashion using limited backup. Some context
sensitive constructs can alsc be handled; i.e., flags
and values and block structure in symbol tables.
There is-little interest, however, in dealing with such
problems as the FORTRAN "continue" statement, the PL/1
"enough ends to match," or the ALGOL "is it procedure

or is 1t a variable" question. Tree Meta is only one

part of a system~building technique. There is flexibility

161

at all levels of the system, and the design philosophy
has been to reap maximum payoff rather than fight
old problems.

Many of the features considered necessary for a
compiler-compiler system are absent in Tree Meta. There
are no features for handling multi-dimensional
subscripts or higher-level macros. These features
are not present because the users have not needed them.

None, however, would be difficult to add.

3, Compiler Writing Schemes

There are two classes of formal-definition compiler-writing
schemes.

In terms of usage, the productive or synthetic approach
to language definition is the most common. A productive
grammar consists primarily of a set of rules which describes
a method of generating all the possible strings of the
language.

The reductive or analytic technique states a set of
rules which describe a method of analyzing any string of
characters and deciding whether that string is in the
language. This approach simultaneously produces a structure
for the input string so that code may be generated.

The metacompilers are a combination in both schemes.
They are neither purely productive nor purely reductive,
but merge both technigues into a single system. These
compilers are expressible in their own language, hence the
prefix "meta." |

102

4, Top-Down Parsing

The following is a formal discussion of top-down parsing
algorithms. It relies heavily on definitions and formalisms
which are standard in the literature and may be skipped by
the lay reader. For a language L, with wvocabulary V, non-
terminal vocébulary N, productions P, and head S, the top-down
parse of a string u in L starts with S and looks for a sequence

of productions such that S => u (5 produces u).

Let v=/{E, T, F, +, *, 9,), X}

N={E, T, F}

P={E ::=T,/ T+ F
T 3:=F / F * 7T
F ::=X/ (E)}
L = (V,N,D,E)

The following intentionally incomplete ALGOL procedures
will perform a top-down analysis of strings in L.

a. boolean procedure E; E := if T then (if

is symbol ('+') then E else true) else false; comment

is symbol (arg) is a boolean procedure which compares
the next symbol in the input string with its argument,
arg. If there is a match, the input stream is advanced;

b. boolean procedure T; T := if F then (if is symbol

('*') then T else true) else false;

€. boolean procedure F; F := if is symbol ('X")

then true else iﬁ is symbol (' (') then (iﬁ'E then (if

is symbol (')') then true else false} else false)

else false;

103

Practical recognizers, as opposed to abstract systems,
such as BNF, can get into infinite loops in a manner
know as left recursion. The left-recursion problem can
readily be seen by a slight modification of L. Change
the first production to
Bors=T/E + 1
and the procedure for E in the corresponding way to

E : = 1f T then true else if E

Parsing the string "X+X", the procedure E will call T,
which calls F, which tests for "X" and gives the result
"true." E is then true but only the first element of
the string is in the analysis, and the parse stops before
completion. If the input string is not a member of the
language, T is false and the alternative E is called, which,
of course, calls T again, and E loops infinitely.

The solution to the problem in Tree Meta is the
repetition operator. In Tree Meta, the first production
could be

E = T§("+" T)
where the dollar sign-parentheses indicate that the
guantity inside the parentheses can be repeated any
number of times, including zero times.

Tree Meta makes no check to ensure that the compiler
it is producing lacks syntax rules containing left recursion,
The use of left recursion is one of the more common

mistakes made by inexperienced metalanguage programmers.

104

5. Tree Meta Input Language

The input lnaguage to the metacompiler closely resembles BNF.
The primary difference between a BNF rule
<go to> :: = go to <label>
and a metalanguage rule
GOTO = "GO" "TO" ,ID:
is that the metalanguage has been designed to use a computer-
oriented character set and predefined basic entities. The
REPETITION (arbitrary-number) operator and parenthesis
construct of the metalanguage are lacking in BNF, For example,
TERM = FACTOR $‘("*" /J "/" / "+") FACTOR) ;
is a metalanguage rule that would replace 3 BNF rules.

The ability of the compilers to be expressed in their own
languade has resulted in the proliferation of metacompiller
systems. Each one is easily bootstrapped from a more primitive
version, and complex compilers are built with little programming

or debugging effort.

105

BASIC SYNTAX

CHAPTER 2

1. ©Syntax Rules

A metaprogram is a set of metalanguage rules. Each rule
has the form of a BNF rule, with output instructions embedded
in the syntactic description.
The Tree Meta compiler converts each of the rules to
a set of Fortran statements.
As the rules (acting as instructions) compile a
program, they read an input stream of characters one
character at a time. Each new character is subjected to
a series of tests until an appropriate syntactic description
is found for that character. The next character is then
read and the rule testing moves forward through the input.
The following four rules illustrate the basic constructs
in the system. They will be referred to later by the

reference numbers R1A through R4A.

R1A EXP = TERM ("+" EXpP / "-" EXP / .EMPTY);
R2A TERM = FACTOR S ("*" FACTOR / "/" FACTOR);
R3A FACTOR = "-" FACTOR / PRIM;

R4A PRIM = .ID / .NUM/ " (" EXP ")";

The identifier to the left of the initial equal
sign names the rule. This name is used to refer to the
rule from other rules, The name of rule R1A is EXP.

The right part of the rule--everything between the
initial equal sign and the trailing semicolon--is the
part of the rule which effects the scanning of the input.

200

- Five basic types of entities may ocCur‘in a right part.
Each of the entities represents some sort of a test which
results in setting a general flag to either "true" or
"false."
a. A string of characters between quotation
marks (") represents a literal string. These literal
strings are tested against the input stream as characters
are read.
b. Rule names may also occur in a right part.
If a rule is processing input and a name is reached,
the named rule is inwvoked. R3A defines a FACTOR as
being either a minus sign fcllowed by a FACTOR, or
just a PRIM.
¢. The right part of the rule FACTOR has just been
defined as "a string of elements," or "another string

n

of elements."” The "or's" are indicated by slash
marks (/) and each individual string is called an
alternative., Thus, in the above example, the minus
sign and the rule name FACTOR are two elements in R3A.
These two elements maké up an alternative of the rule.
d. The ‘dollar sign is the repetition operator in
the metalanguage. A $ must be followed by an STEST
element, and it indicatés that this element may occur
anvarbitrary number of times (including zero). Paren-
theses can be used to group a set of elements into
a single STEST element to be repeated. This is
shown in rules R1A and RéA abbve.
e. In Tree Meta, three basic recognizers are

"identifier" as .ID, "number" as .NUM, and "string"

201

as .SR. Other basic recognizers are described in
Section 4 on page 217.. Another basic entity which is
treated as a recognizer, but does not look for anything,
is .EMPTY. It always returns a value of "true." Two
basic entities may be seen in rule R4A., A basic
recognizer is a program in Tree Meta that may be
called upon to test the input stream for an occurrence
of a particular entity; i.e., .ID checks for any
combinations of letters and digits starting with a
letter; .NUM c¢hecks for any combination of digits;
and .SR checks for any combinations of letters
enclosed in double quotes.

As an example, suppose that the input stream
contains the string X*Y when the rule EXP is invoked
during a compilation. EXP first calls rule TERM,
which calls FACTOR, which tests for a minus sign.

This test fails and FACTOR then tests for a plus
sign and fails again., Finally, FACTOR calls PRIM,
which tests for an identifier. The character X is
an identifier; it is recognized and the input stream
advances one character.

PRIM returns a value of "true" to FACTOR, which
in turn returns to TERM. TERM tests for an asterisk
and fails. It then tests for a slash and fails. The
dollar sign in front of the parenthesized group of
TERM, however, means that the rule has succeeded
because TERM has found a FACTOR followed by zero
occurrences of "* FACTOR" or "/ FACTOR." Thus,

202

TERM returns a "true" value to EXP. EXP now tests for
plus sign and finds it. The input stream advances
another character.

EXP now calls on itself. BAll necessary information
is saved so that the return may be made to the right
place. In calling on itself, it goes through the
sequence just described until it recognizes the Y.

Thinking of the rules in this way is confusing
and tedious. It is best to think of each rule
separately. For example, one should think of R2A as
defining a TERM to be a series of FACTORS separated
by asterisks and slashes and not attempt to think

of all the possible things a FACTOR could be.

2. Parse Trees

Tree Meta builds a parse tree of the input stream before
preoducing any output. Before we describe the syntax of node
generation, let us first discuss parse trees.

A parse tree is a structural description of the input
gstream in terms of the given grammar.
Using the four rules above, the input stream
X+Y*7

nhas the following parse tree:

203

EXP

TERM
®FACTOR
®PRIM FACTOR
lPRIM ®PRIM
ny nog o

In this tree, each node is either the name of a rule or
.~ one of the primary entities recognized by the basic recognizer
routines.

Also, there is a great deal of subcategorization. For
example, Y is a PRIM which is a FACTOR which is the left
number of a TERM., This degree of subcategorization is
generally undesirable.

The tree produced by the metacompiler program 1is simpler
than the one above, yet it contains sufficient informatiocn
to complete the compilation.

The parse tree actually produced is:

ADD
X ULT

Y 4
In this tree, the nodes are the names of output rules

which generate coée.

204

The parse rules which produce the above tree are the
same as the four previous rules with new syntax additions
to perform the appropriate node generatioﬁ. A colon
followed by an output rule name is used in a parse rule to

build a tree node. The complete rules are:

R1B EXP = TERM ("+" EXP :ADD{2}/"-" EXP :SUB{2}/.EMPTY);

R2B TERM = FACTOR $("*" FACTOR :MULT{2}/ "/" FACTOR :DIVD{2});
R3B FACTOR = "-" FACTCR :MINUS{l1} / PRIM;

R4B PRIM = .ID / .NUM / " (" EXpP ")";

As these parse rules scan an input stream, they perform just
like the first set. As the entities are recognized, however,
they are. stored on a push-down stack until the node-generation
element of the parse rule removes them to make trees. As an
example, consider how the input’ stream X+Y*Z is analyzed.

EXP calls TERM, which calls FACTOR, which calls PRIM,
which recognizes the X. The input stream moves forward
and the X is put on a stack.

PRIM returns to FACTCR, which returns to TERM, which
returns to EXP. The plus sign is recognized and EXP is
again called. This is an example of a recursive call.
Again EXP calls TERM, which calls FACTOR, which calls
PRIM, which recognizes the Y. The input stream is
advanced, and Y is put on the push~down stack. The stack
now contains Y,X, and the next character on the input
stream is the asterisk. H |

PRIM returns to FACTOR, which returns to TERM. The

asterisk is recognized, and the input is advanced another

SRR A ST U A

character.

205

The rule TERM now calls FACTOR again, which calls PRIN,
which recognizes the %, advances the input stream, and
puts the Z on the push-down stack. PRIM returns to
FACTOR. FACTOR returns to its second call from TERM,
The construct :MULT is now processed. This names the
next node to be put in the tree. Later we will see that,
in a complete metacompiler program, there will be a rule
named MULT which will be processed when the time comes to
produce code from the tree. Next, the {2} in the rule
TERM is processed. This tells the system to construct a
portion of a tree. The branch is to have two nodes, and
they are to be the last two entities recognized (they are on
the stack). The name 6f the branch is to be MULT, since
that was the last name given. The branch is constructed and
the top two items of the stack are replaced by the new
node of the tree.
The stack now contains:
MULT
X
The parse tree is now
MU LT
Y /////Q\\\\Z
Notice that the nodes are assembled in a left-to-
right order, and that the original order of recognition
is retained.
Rule TERM now returns to EXP, and EXP returns to the
previous call on itself. The next node is named by executing

206

£he :ADD; i.e,, naﬁes the next node for fhe tree. The{2}
in rule EXP is now executed. A branch of the tree is
generated which contains the top two items of the stack
and whose name is ADD. The top two items of the stack
are removed, leaving it as it was initially, empty. The
tree is now complete, as first shown, and all the input

has been passed over.

3. Unparse Rules

Now a second set of rules, the unparse rules, are applied -
to the tree to generate code. The unparsing rules have two
functiotis: they produce output and they test the tree in
much the same way as the parsing rules test the input stream.
This testing of the tree allows the output to be based on the
deep structure of the input, and, hence, better output may be
produced.
3Ja. Output

Before we discuss the node-testing features, let us first
describe the various types of output that may be produced.

The following list of output-generation features in the meta-
compiler system is enough for most examples.

1. The output is line-oriented, and the end of a line
is determined by a carriage return. To instruct the system
to produce a carriage return, one writes a backslash as an
element of an unparse rule.

2. To put a tab character intc the outpﬁt stream,

one writes a comma‘as an element of an output rule.

207

3. A literal string can be inserted in the output stream
by enclosing the literal string in quotes in the unparse
rule. Notice that, in the unparse rule, a literal string -
becomes output; while, in the parse rules, it becomes an
entity to be tested for in the input stream. To output
a Portran continuation statement which has 100 as a label,
one would write the following string of elements
in an unparse rule:

"100", "CONTINUE" _

4. As can be seen in the last example of a tree, a
node of the tree may be either the name of an unparse rule,
such as ADD, or one of the basic entities recognized during
the parse, such as the identifier X.

5. Suppose that the expression X+Y¥*Z has been parsed
and the program is in the ADD unparse rule processing the
ADD node (later we will see how this state is reached).

To put the identifier X into the output stream, one writes
"#1" (meaning "the first node below") as an element. For
example, to generate an output line with fixed and variable
parts, cne would write:

,"CALL ("*1")"\

6. To generate the code for the left-hand node of the
tree one merely mentions "*1" as an element of the unparse
rule. Caution must be taken to ensure that no attempt is
made to append a nonterminal node to the output stream;
each node must be tested to be sure that it 1s the right

type before it can be evaluated or output.

208

Generated labels are handled auvtomatically. A label is
referred to by a number sign followed by a number. Every
time a label is mentioned during the execution of a rule, a
label is generated, and then appended to the output stream.
If one output rule calls another output rule, all the labels
are saved, and new ones generated. When a return is made, the
previous labels are restored.
As trees are being built during the parse phase,
a time comes when it is necessary to generate code from
the tree. To do this, one writes an asterisk as an element
of a parse rule; for example,
RSB PROGRAM = ",PROGRAM" S (8T *) ".END";
which generates code for each statement (8T) after it has
been entirely parsed. When the asterisk is executed,
control of the program is transferred to the rule whose
name is the foot (top node or last generated node) of the
tree. When return if finally made to the rule which
initiated the output, the entire tree is cleared and the
generation process beginsg anew.

3b. Node Testing

Structurally, an unparse rule is a rule name followed by
a series of output rules. The diagram of an unparse rule may

be referenced while reading the following section.

MDX {-,.ID} => IT{*1} 'A / *2 'B {-} => *1:8;
' TES@J TEST |
our oUT- ouUT- ouT ouT-
TEST EXPRS EXPRS TEST EXPRS
OUTPUT RULE
OUTPUT RULE or OUTRULE or OUTRULE

209

Each output rule begins with a test of nodes. The series of
output rules make up a set of highest-level alternatives. When
an unparse rule is called, the test for the first output rule
is made. If it is satisfied, the remainder of the alternative
is executed; if it is false, the next alternative output rule
test is made. This process continues until either a successful
test is made or all the alternatives have been tried. If a
test is successful, the alternative is executed and a return
is made from the unparse rule with the general flag set "true."
If no test is successful, a return is made with the general
flag "false.™

Suppose a translator is to be constructed for a language
with arbitrary expressions as subscripts. For example:

X(I*J - 3)
YZ{(3 * K / J)

The target language (Fortran, for example) usually does not
allow this. Fortran subscripts are normally a simple integer
variable or constant optionally followed by a signed constant.
For example:

X(I)
YZ(J + 3)

By building a tree before generating any output code, it
is possible to detect special cases and take appropriate action,
Suppose, during the parse phase, the following tree is built.

Subscripted variable

Y7 ADD

An unparse rule with four alternatives could be used to detect

special cases.

sv{-, ADD {.ID, .NUM}} => (special case) /
{-, suB {.ID, .NUM}} => (special case) /
{-, .ID} => (special case) /
{-, -} => (general case) :

The simplest test that can be made is the test to ensure
that the correct number of nodes emanate from the node being
processed. The ADD rule may begin

ADD{-,~-} =>
The string within the brackets is known as an out-test. The
hyphens are individual items of the out-test. Each item is a
test for a node. All that the hyphen requires is that a node
be present. The name of a rule need not match the name of the
node bsing processed.

1. 1If one wishes to eliminate the test at the head
of the out-rule, one may write a slash instead of the
bracketed string of items. The slash, then, takes the
place of the test and is always true. Thus, a rule which
begins with a slash immediately after the rule name may
have only one cut-rule. The rule

MT / => .EMPTY;

is frequently used to flag the absence of an optional

item in a list of items. It may be tested in other

unparse rules, but it itself always sets the general flag
true and returns.

2. The nodes emanating from the node being evaluated
are referred to as *1, *2, etc., counting from left to right.

211

To test for equality between nodes, one merely writes

*i for some i as the desired item in an out-test. For
example, to see 1if node 2 is the same as node 1, one could
write either {-,*1} or {*2,-}. To see if the third node

ig the same as the first, one could write {-,%2,*1}. 1In
this case, the *2 could be replaced by a hyphen.

| 3. One may test to see 1f a node is an element which
was generated by one of the basic recognizers by mentioning
the name of the recognizer. Thus to see if the node is

an identifier one writes.ID; to test for a number one writes
.NUM. To test whether the first node emanating from the
ADD 1s an identifier énd if the second node exists, one
writes {.ID,-}.

4. 7To check for a literal string on a node, one may
write a string as an item in an out-test. The construct
{=,"1"} tests to be sure that there are two nodes and that
the second node is a 1., The second node will have been
recognized by the .NUM basic recognizer during the parse
Phase.

5. A generated label may be inserted into the tree
by using it in a call to an unparse rule in anocther
unparse rule. This process will be explained later. To see
if a node 1s a previously generated label, one writes a
number sign followed by a number. If the node is not a
generated label the test fails. If it is a generated
label, the test is successful and the label 1s associated
with the number following the number sign. To refer to the
label in the unparse rule, one writes the number sign followed

by the number.,
212

6. Finally, one may test to see if the name matches
a specified name. Suppocse that one had generated a node
named STORE. The left node emanating from it is the name
of the variable and on the right is the tree for an expression.
An unparse rule may begin as fcllows:

STORE{-,ADD{*1,"1"}} => , "MIN " *1
The *1 as an item of the ADD refers to the left node of
the STORE, Only a tree such as
STORE

Pyl
e \\

LD ADD

.ID 1
would satisfy the test, where the two identifiers must be
the same or the test fails. An expression such as X «+ X + 1
meets all the requirements.

3c. Qut-Expressions

Bach out-rule, or highest~level alternative, 1n an unparse
rule is also made up of alternatives. These alternatives
are spearated by slashes, as are the alternatives in the parse
rules.

The alternatives of the out-rule are called "out-exprs."
The oﬁt*expr may begin with a test, or it may begin with
instructions to output characters. If it begins with a test,
the test if made. If it fails, the next out-expr in the out-rule
is tried. If the test is successful, control proceeds to the
next element of the out-expr. When the out-expr is done, a

a return is made from the unparse rule.

213

The test in an out-expr resembles the test for the out-rule.
There are two types of these tests.

1. Any non-terminal node in the tree may be transferred
to by its position in the tree rather than its name. For
example, *2 would invoke the second node from the right.
This operation not only transfers control to the specific
node, but it makes that node the one from which the next
set of nodes tested emanate. After control is returned
to the position immediately following the %2, the general
flag ig tested. If it is "true" the out-expr proceeds to
the next element. If it is "false" and the *2 is the
first element of the out—-expr the next alternative of the
out-expr is tried. If the flag is "false" and the *2
is not the first element of the out-expr, a compiler erxrror
ig indicated and the system stops.

2. The other type of test is made by invoking another
unparse rule by name and testing the flag on the completion
of the rule. To call ancther unparse rule from an out-
expr, one writes the name of the rule followed by an
argument list enclosed in brackets. The argument list is
a list of nodes in the tree. Copies of these nodes are
put on the node stack, and when the call is made, the rule
being called sees the argument list as its set of nodes to

analyze. For example:

214

ADD{MINUS{-},-} => SUB{*2,%1:%1}

ADD SUB

yd =>
MIN{S iy -
/ / \\“

B B
A

This tree building feature maintains the substructure of
the nodes being transferred, such as the structure beneath
A and B.
Only nodes and generated labels can be written as
arguments. MNodes are written as *1, *2, etc. To
reach other nodes of the tree, one may write such things
as *¥1:%2, which means "the second node emanating from
the first node emanating from the node being evaluated."
Referring to the tree for the expression X+Y*Z on
page 203, if ADD is being evaluated, *2: *1 is Y. To
go up the tree, one may write an "uparrow" (4} followed
by a number before the asterisk-number-colon sequence.
The uparrow means to go up that many levels before the
search is made down the tree., If MINUS were being
evaluated, +1*2 would be the B.
If a generated label is written as an argument,
it is generated at that time and passed to the called
unparse rule so that that rule may use it or pass it
on to other rules. The generated label 1s written
just as it is in an output element; i.e., a number

sign followed by a number.

215

for

The calls on other unparse rules may occur anywhere
in an output expression (out-expr). If they occur in
a place other than the first element, they are executed‘
in the same way, except that after the return, the
flag is tested; if it is false a compiler error is
indicated. This use of extra rules helps in making the
output rules more concise.

The rest of an out-expr is made up of output
elements appended to the output stream, as discussed
above.

Sometimes, it is necessary to set the general £f£lag in
an out-expr, just as it 1s sometimes necessary in the parse
rules. LEMPTY may be used as an element in an out-expr
at any place.

Out~exprs may be nested, using parentheses, in the same

way as the alternatives of the parse rules.

Additional Features

Some additional features of Tree Meta make programming easier
the user.

If a literal string is but one character, one may write
an apostrophe followed by the character rather than writing
a quotation mark, the character, and another guotation mark.
For example: 'S and "S" are interchangeable in either a
parse rule or an unparse rule.

As the parse rules proceed through the input stream,

they may come to a point where they are in the middle of

216

a parse alternative and there is a failure. This may
happen for twe reasons: backup is necessary to parse the
input, or there is a syntax error in the input. Backup
will not be covered in this introductory chapter. If the
syntax error occurs, the system prints out the line in
error with an arrow pointing to the character which cannot
be parsed. The system then stops. To eliminate this, one
may provide for an error message by writing a "?" followed
by a rule name. The error construct may appear after any
test except the first in the parse equations. For example,

ST = .ID'= $2 EQERR EXP ?3 EXERR'; ?4 SYNERR : STORE{2};

Suppose this rule is executing and has called rﬁle EXP, and
EXP returns with the flag false. Instead of stopping,

Tree Meta prints the line in errcr with an arrow pointing
to the offending character and an error comment which
contains the number 3. The ccmpiler then transfers contral
to the parse rule EXERR.

Comments may be inserted anywhere in a metalanguage
program where blanks may occur. A comment begins and ends
with a "%" and may contain any character except, of course,
a "%.4

In addition to the basic recognizers .ID, .NUM, and
.SR, three others are occasionally very useful.

The symbol .LET tests for the occurrence of a
single letter, and the symbol .DIG tests for the
occurrence of a single number. Also, .CHR tests for
the occurrence of any single character (letter, digit,

or special character).

217

The recognizers .CHR, .LET, and .DIG, 1f successful,
store away a character in a special way; hence, references
to 1t are not exactly the same as for other basic recognigzers.
In all three cases, the octal representation of the
characters is put directly in KSTACK. In node testing,
if one wishes to check for the particular occurrence of a
character that was recognized by .CHR, .LET, or .DIG, one
uses the single guote - character construct. If one wishes
to test what rule recognized a character, use .CHR, .LET,
or .DIG. When outputting a node which is a character,
letter, or digit, one adds :C to the node indicator. For
example, *1:C outputs all characters, whether recognized by
.CHR, .LET, or .DIG.

When a compilation is very simple, it may be cumbersome
to build a parse tree and then output from it; hence, the
ability to output directly from parse rules is available.

The syntax for direct ocutput from parse rules is
generally the same as for unparse rules. The output
expression is written within sqguare brackets. (See
formal description, p. 312.) The items from the
input stream which normally are put in the parse tree may
be copied to the ocutput stream by referencing them in the
output expression. The most recent item recognized is
referenced as * or *80. Items recognized previous to
that are *S1, *S2, etc., counting in reverse order--
that is, counting down from the top of the KSTACK in
which they are kept. Other characteristics of the items
such as length, number, cheracter may be put in the

218

output stream as in unparse rules by L, N, C, respectively;
i.e., *81L will output the length of the item S1.

Normally, the items are removed from the stack and
put into the tree; however, if they are just copied
directly to the ocutput stream, they remain in the KSTACK.
They are removed by writing an "&" at the end of the parse
rule (just before the ;}. This causes all input items
added to the KSTACK by that rule to be removed. The
input stack is, thus, the same as it was when the rule
was called.

In addition to the previcus means of outputting code,
another exists which permits output in a more immediate
sense into the body of code which is the generated
compiler., Remember that the basic function of Tree Meta is
to output a body of code (symbolic Fortran statements) which

acts as a compiler for some user-defined language.

SPECIFICATIONS TREE META FORTRAN PROGRAM -
FOR USER-DEFINED -~ -~ A COMPILER FOR
LANGUAGE OMPTLER USER'S LANGUAGE

As a specific example of this process, consider the parse
construct "CONTINUE" which generates for the user's
compiler: CALL TST (8, BHCONTINUE}.

The same construct in an upparse rule generates.the
Fortran output: CALL LIT(8, S8HCONTINUE).

Both TFortran statements are executed when the generated
compiler is running. The LIT subroutine, for example,
outputs the eight characters CONTINUE in the output stream,

"CONTINUE" - lGENERATED
~ | TREE META | —CALL LIT (8, 8HECONTINUE)-

4
CONTINUE

219

Sometimes, the Tree-Meta user wantsg to output code immediate~
ly from Tree Meta having the result executed in the generated
compiler instead of being executed as code that the generated

compiler has output. Thus, for example,
1(,"REWIND"/}

causes a Fortran rewind statement to be inserted directly in-
to the generated compiler. This statement would be executed

"immediately" as the generated compiler ig being executed in-
stead of being "deferred” for execution one step later in the

program the generated compiler generates.

220

FORMAL DESCRIPTION

CHAPTER 3

This chapter is a formal description of the complete Tree Meta
language. It is designed as a reference guide, not as a training

manual,

l. Programs and Rules

Syntax
program = (", META" .ID size/".CONTINUE" .ID)
(".LIST"/.EMPTY) $(rule)".END";
size = '(siz S${', siz) / .EMPTY;
siz = ,CHR '= ,NUM ;
rule = .ID ('= exp('s/ .EMPTY) / '/"= T‘"genl /
outrul) ';
Semantics

A file of symbolic Tree Meta code may be either an
original main file or a continuation file. A compiler
may be composed of any number of files, but there may
be only one main file.

The mandatory identifier fillowing the string .META
in a main file nameé the rule at which the parse will be-
gin, and is also the name of the Fortran symbolic element
produced.

The optional .LIST refers to a listing of
(1} code -~ output code from TREE META
{the generated compiler)

(2} source -~ the input to TREE META (compiler

300

specificationsg)

The opticns are:

.LIST OFF :no listing

LLIST :list both source and code
,LIST SOURCE :1ist source, no code
.LIST CODE tlist code, no source

If not specified, TREE META lists code and source. The list

option can be used anyplace an NTEST is used,

The size construct sets the allocation parameters
for the three stacks and string storage for use by the
generated compiler. The default sizes are those used
by the Tree Meta compiler. M,X,N, and 5 are the only
valid characters; the size is something which must be
determined by experience. The maximum number of cells
used during each compilation is printed out at the end
of the compilation.
When a file begins with .CONTINUE, no initialization or stor-
age-allocation code is produced,
There are three different kinds of rules in a Tree Meta pro-
gram., All three begin with the identifier which names the rule,
1. Parse rules are distinguished by the = following the i-
dentifier. If all the elements which generate possible nodes
during the execution of a parse rule are not built into the
tree, they must be popped from the kstack by writing an amp-
ersand immediately before the semicolon.
2. Rules with the string /= following the identifier may

be composed only of elements which produce output. There is

301

no testing of flags within a rule of this type.
3. Unparse rules have a left bracket following the identi-

fier. This signals the start of a series of node tests.

Expressions

Syntax
exp = ' suback ('/ exp / EMPTY) / subexp ('/ exp / EMPTY) ;
suback = ntest {(suback / .EMPTY) / stest (suback / .EMPTY)
subexp = (ntest / stest) (noback / EMPTY) ;
noback = (ntest / stest ('? .num (.id / '?) / .EMPTY))

(nopack /.EMPTY) ;
Semantics

The expressions in parse rules are composed entirely of
ntest, stest, and error-recovery constructs. The four rules
above, which define the allowable alternation and concatenation
of the test, are necessary to reduce the instructions exe-
cuted when there is no backup of the input system. Tree Meta
users can control the use of back up in their generated com-

pilers on a subexpression by subexpression basis,

An expression is essentially a series of subexpressions
separated by slashes., Each subexpression is an alternative
of the expression. The alternatives are executed in a left-
to-right order until a successful one is found. The rest of
that alternative is then executed and the rule returns to the

rule which invoked it.

The subexpressions are series of tests. Only subexpres-
sions which being with a left arrow are allowed to back up

the input stream and rescan it.

302

3
’

If any STEST other than the first within the subexpression
fails, three possibilities exist. The course of action is
determined by the following syntax for the error code:
U2 NUM (.ID / '?)". |

if.one qﬁestion mark is present, the system prints the num-
ber following the "?" in the error code.

If the optional identifier is given eg: "? 21 RULE 1", the

- system then transfers contrxol to that rule; if another "?"

(2}

is given instead of the optional identifier eg: "?21?, the
system stéps.

If a backup arrow is used ("<-"), the input stream 1is
backed up to try another subexpression.

If both error code and back-up arrow are absent, the system

prints an error comment and stops. Thus, both error codes

ahd back-up arrows may only be used with subexpressions of

more than one STEST. {i.e., the two rules below are not

valid):

RULE 1 T 221E

Y

'RULE 2 = + STEST

S~

If the.test fails, the input stream is restored to the

position it had when the subexpression_began to test the in-

put

‘ may'

fer

the

stream and the next alternative is tried. The input stream
never be moved back more characters than are in the ring buf-
(5000). Normally, backup is over identifiers or words and

buffer is long enough.

Elements of Parse Rules

SYntax

ntest = ': .ID/'[(.NUM '] / genp'] /'*/ list/ " = >

303

list = ".LIST" ("SOURCE"/"CODE"/"OFF" / .EMPTY) ;
genp = genpl / .empty;
genpl = genp2 (genpl / .emnpty);
genp2 = '* ('S.num / .empty) ('L / 'C / 'N / .empty / genu;
comm = ",EMPTY" / '! (.SR / 'itst'));
itst = (.SR/'N\/'",/''+.CHR/"#1"/"42"/ "#3"/ 'S .ID)
itst / .EMPTY);
stest = '. .ID ('((INSIDEPAREN/.EMPTY)')/.EMPTY)/
.ID/
..+ SR/
"(EXP ') /
'+ gstest/
(.NUM/.EMPTY) '$ (.NUM/.EMPTY) stest/
'-stest/
"-—" gtest ;
Semantics

The ntest elements of a parse rule cannot change the value
of the general flag and, therefore, need not be fcllowed by
flag-checking code in the compiler.

The ': .ID construct (:XX) creates a new node in the
tree with the name XX. The identifier used must be the
name of an unparse rule.

example: :ADD{2}

:ADD creates a new node called ADD. {2} grabs two items off

the kstack and attaches them to the above node; as

ADD

O//\\D

304

The {nnn} construct grabs nnn number of items off the
kstack, and attaches them to the node laét created.

The {genp} is used to write output into the normal output
streém during the parse phase of the compilation without building
trees. For description of GENU, see section 6.

An asterisk causes the rule currently in execution to perform
a subroutine call to the rule named by the top of the tree.

The " =>" STEST construct will cause the input stream to be
scanned to the occurrence of any STEST.

The comm elements are common to both parse and unparse rules,

The .EMPTY in any rule sets the general flag true.

The exclamation . peoint construct "!" preceding a string or
any ITST can be used to insert code directly into the compiler
being produced. ITST provides for the insertion of a string,
a comma, a single character, generated labels, or ! ({($.ID)
inserts the statement label of the rule named by .ID. 2An example
of several of the construct is:

1(."GO TO " #1\#l, "CONTINUEV\)
This will output:
GO TO 1023

1023 CONTINUE

Stests always test the input stream for a literal string or
a basic entity. If the entity is found, it is removed from the
input stream and stored in string storage. Its position in string
storage is saved on a push-down stack so that the entity may later
be added as aterminal node to the tree.

An .ID construct provides a standard subroutine call to
the identifier., Supplied with the Tree Meta library are subroutines

305

for .ID, .NUM, ,3SR, .CHR, .LET, and .DTG which check for
ldentifier, number, string, character, letter, and diglt
respectively.

To generate a call to a subroutine other than the ones
above, the '. .ID must be followed immediately by an argument
list in parentheses. The argument 1llst may be empty (l.e.
.COL(72) and .BLANKC{) would generate CALL COL (72) and CALL
BLANKC, respectively).

An didentifier by itself produced a call to the rule with the
name of the identifier via the MCALL subroutine.

A literal string merely tests the input stream for the
string. TIf it is found, it is discarded. The apostrophe-
character construct functlions llke the lifteral string, except
that the test is limited to one character. ™The apostrophe
construct will examine the input stream for che first non-
blank character and test 1t with the character immediately
following the apostrophe.

A "+" pefore any STEST item prevents skipping leading
spaces, For example, 'A +.CHR will pick up the next character
following the "A"™ in the input, even 1f it is a space. Notice
that + ¥ will test the next character in the input stream for
a blank. |

The number-3$-number construct 1s the repetition operator
of Tree Meta. m$n preceding an stest element in a parse rule
means that there must be between m and n occurrences of the
next element coming up in the input. The default cptions
for m and n are zero and infinity, respectively.

306

The hyphen ("-") construct before any STEST item tests
to see if the STEST items is not in the input stream. For
example, -'* .CHR will pick up any character excépt ¥, Any
items that are put on the kstack during the test are removed
after the test. Thus, -('* .ID) would not leave the identifier
on the kstack. The pointers are restored after the test has been
completed, The "-" test may be nested to any level: —-('*-('* ,ID)).
The construct "--" before any STEST item tests to see if the

STEST item 1s there, without moving the input pointer. Thus,

--'% _CHR will pick up only an *.

Unparse Rules

syntax
outrul = '{outr (outrul / .EMPTY):
outr = items '} "=>" outexp;

items = item (', items /.EMPTY);
item = '- / ,ID '{items}' / nsimpl / '. .ID / .SR/
"'+ JCHR/'#$#.NUM;

Semantics

The unparse rules are similar to the parse rules in that
they test something and return a true or false value in the
general flag. The difference is that the parse rules test
the input stream, delete characters from the input stream, and
build a tree, while the unparse rules test the tree, collapse
sections of the tree, and write output.

There are two levels of alternation in the unparse rules.
The highest level is not written in the normal style of Tree
HMeta as a series of expressions separated by slashes; rather,
it is written in a way intended to reflect the matching of

307

nodes and structure within the tree. Each unparse rule is a

series of these highest-level alternations. The tree-matching

parts of the alternations are tried in sequence until one is

found that successfully matches the tree. The rest of.the

alternation is then executed. There may be further tests within

the alternation, but not complete failure as with the parse rules.
The syntax for a tree-matching pattern is a left bracket,

a series of items separated by commas, and a right bracket.

The items are matched against the branches emanating from

the current top node. The matching is done in a left-to~right

order. As soon as a match fails, the next alternation is tried.
If no alternation is successful,ﬂa false value is réturned.
Each item of an unparse alternation test may be one of

seven different kinds of test.

1. A hyphen is merely a test to be sure that a node
is there. This sets up appropriate flags and points so
that the node may be referred tc later in the unparse
expression if the complete match is successful.

2. The name of -the node may be tested by writing an
identifier which is the name of a rule. . The identifier
must then be followed by a test on the subnodes.

3. A nonsimple construct, primarily an asterisk~number—
éolon sequence, may be used to test for node équivalence.
Note that this does not test er‘complete‘substfucture
equivalence, but merely to see if the node being tested has
the same name as the node specified by the construct;'

308

4, The .ID, .NUM, .CHR, .LET, .DIG, or .SR checks to
see if the node is terminal and was put on the tree by an
identifier recognizer, number recognizer, etc., during the
parse phase. This test is very simple, for it merely
checks a flag in the upper part of a word.

5. If a node is a terminal node in the tree, and if
it has been recognized by one of the basic recognizers,
it may be tested against a literal string. This is done
by writing the string as an item. The literal string
does not have to be put into the tree with an .SR recognizer;
it can be any string in string storage, put in with . SR,
LNUM, or .ID.

6. If the node is terminal and was generated by the
.CHR, .LET, or .DIG recognizers, 1t may be matched aga.inst
another specific character by writing the apostrophe-
character construct as an item.

7. Finally, the node may be tested to see if it is a
generated label. The labels may ke generated in the
unparse expressions and then passed down to other unparse
rules. The test is made writing a "§"-number construct as
an item. If the node is a generated label, not only is
this match successful, but the label is made available
to the elements of the unparse expression as the number

following the "#."

5. Unparse Expressions
Syntax

outexp = subout ('/outexp / .empty);

}

outt (rest / .empty) /rest;

i

subout

309

rest = outt (rest / .empty) / gen {(rest / .empty):

outt = .id '{arglst "} / '(outexp "y / nsimpl (':
(s /L /N / C}) / empty):

arglst = argmnt (', arglst / .empty) /.empty:

argiant = nsimp /S '# .num;

nsimpl = '+ NUM nsimp / nsimp:

nsimp = '*¥ .num (': nsimp / .empty);

genl = (out / comm) (genl / .empty):

gen = comm Jgenu / '< / '> ;

Semantics

The rest of the unparse rules follow more closely the style

of the parse rules. Each expression 1s a series of alternations

separated by slash marks.

Each alternaticon is a test followed by a series of output

instructions

expressions.

, calls of other unparse rules, and parenthesized

Once an unparse expression has begun executing:

calls on other rules, elements may not fail; 1f they do a

compiler error is indicated and the. system stops.

The first element of the expression is the test. This

elament is a

false value.

call on another rule; which returns a true or’

The call is made by writing the name of the rule

followed by a series of necdes. ' The nodes are put together td

appear as part of the tree, and when the call is made, the unparse

rule called viecws the nodes specified as the current part of

the tree, and thus the part to match against and process.

Two kinds of things may be put in as nodes for the

calls. The simplest is a generated label. This is done

by writing a "#" followed by a number. Only the numbers

310

1, 2, and 3 may be used in the current system. If a label
has not yet been generated, one is made up. This label is
then put into the tree.

Any already constructed node may also be put into the
the tree in this new position. The old node is not removed--
rather, a copy is made. The substructure of the nodes being
transferred is maintained. An asterisk-number construct
refers to nodes in the same way as the highest-level
alternation.

This process of making new structures from the already-
existing tree is a very powerful way of optimizing the
generated compiler and condensing the number of rules needed
to handle compilation.

The rest of the unparse expression is made up of output
commands, and more calls on unparse rules. As noted above,
if any except the first call of an expression fails, a compiler
error is indicated and the system stops.

The asterisk-number-colon construct is used frequently
in the Tree Meta system. It appears in the node-matching
syntax as well as in the form of an element in the unparse
expressions. When it is in an expression, it must specify
a node which exists in the tree.

If the node specified ig the name of another rule, then
control is transferred to that node by the standard subroutine
linkage.

If the node is terminal, then the terminal string
associated with the node is copied onto the output stream,

311

The simplest form of the construct is an asterisk followed

by a number, in which case the node is found by counting the

appropriate number of nodes from left to right. This may be

followed by a colon-

asterisk-number construct which means to

go down one level in the tree after performing the asterisk-

number choice and count over the number of nodes specified by

the number following the colon. This process may be repeated

as often as desired,

and one may therefore go as deep as one

wishes. All of this specification may be preceded by an

+~-number construct which means to go up in the tree, through

parent nodes, a specified number of times before starting

down.

After the search for the node has been completed, a number

of different types of output may be specified if the node is

terminal. There is
terminal.

:5 puts out

:L puts out

:N puts out

node is

it puts

a compiler error if the node is not

the literal string.

the length of the string as a decimal number,
the string-storage index pointer if the

a stringmstorége element; otherwise,

out the decimal code for the node if it

is a .CHR node. The 1108 version adds 1000 to

the number before it is ocutput.

:C puts out

with a

the character if the node was constructed

CHR, .LET, or .DIG recognizer.

312

6. Output

Syntaxx
genu = out / '. .ID '((INSIDEPAREN / .EMPTY) ') /
''# JNUM (':/. .EMPTY);
out = (‘\/ ', / .SR / ''+ ,CHR / "4w" / "-w" /
ow" / Aw";
Semantics

The standard primitive ocutput features include the
following:

i. Write a carriage return with a backslash.

2. Write a tab with a comma.

3. Write a literal string by giving the literal string.

4. Write a single character using the apostrophe-character
construct,

5. Write references to temporary storage by using a
working counter. Three types of action may be performed with
the counter. +W adds one to the counter, -W subtracts one from
the counter, and .W writes the current value of the counter
onto the output stream without changing it. Finally, AW
writes the maximum value that the counter ever reached during
the compilation,

The : .ID '((INSIDEPAREN/.EMPTY') is used to cenerate a call
to a subroutine. For example, .CERR (5(X,Y)) generates a call to
the subroufine CERR with the argument 5(X,Y).

#N means "define generated label N at this point in the program
being compiled." (N may be 1,2, or 3). If a colon is written

directly after the generated label (#2:), Tree Meta writes the

313

generated label in the output stream followed by a CONTINUE

statement. This construct is added only to save space and writing.

314

PROGRAM ENVIRONMENT

CHAPTER 4

When a Tree Meta program is compiled by the metacompiler, a Fortran
version program is generated. lowever, 1t is not a complete program
since several foutines afe missing. All Tree Meta programs have common
functions such as reading input, generating output, and manipulating
stacks. It would be cumbersome to have the metacompiler duplicate
these routines for each program, so they are contained in a library
package for all Tree Meta programs. The library of routines must be
loaded with the compiled Fortran version of the Tree Meta program to
make it complete.

The environment of the Tree Meta program, as it is running,

is the library of routiﬁés plus the various data areas.

This section describes the environment in its three logical

parts: input, stack organization, and output.

1. Input Machinery

The input stream of text is broken into lines and put into
an input buffer. Carriage returns in the text are used to determine
the ends of lines. Any line longer than 72 characters is broken
into two lines. This line orientation is necessary for syntax
error reporting, a possible anchor mode, and a source listing
option.

It is the job of routine RLINE to £ill the input line buffer.

If the listing flag is on, RLINE copies the new line to the output

400

file. There is a buffer pointer which indicates which character
is to be read from the line buffer next, and RLINE resets the pointer
to the first character of the line.

Input characters for the Tree Meta program are not obtained
from the input line buffer, but from an input window, which is
aétually a character ring buffer. Such a buffer is necessary for
backup. There are three pointers into the input wiandow. NCCP
points to the next character to be read by the program. This may
be moved back by the program to effect backup. MCCP is never
changed except by a library routine when a new character is stared
in the input window. NCCP is used to compute the third pointer,
the inputfwindow rointer IW. Actually, NCCP and MCCP zre counters,
and only IW points into the array, which is the character ring
buffer. MCCP is never backed up and always indicates the next
pogsition in the window where a new character must be obtained
from the input line buffer. Backup 1s registered in IBCK and is
simply the difference between NCCP and MCCP. IBCK is always
negative or zero.

There are several routines which deal directly with the input
window.

The routine PUTIN takes the next character from the input
line buffer and stores it at the input-window position indicated
by IW. This involves incrementing the input-buffer pointer,
or calling RLINE if the buffer is empty. PUTIN does not
change IW,

The routine INC 1is used to put a character into the input

window. It increases IW by one by calling a routine, UPIWP,

401

which makes IW wrap around the ring buffer correctly. If there

is backup (i.e., if IBCK is less than 0), IBCK is increased by

one and INC returns, since the next character is in the window
already. Otherwise, MCCP is increased by one, and PUTIN is
called to stcocre the new character.

A routine called INCS is similar to INC except that it skips
all blanks or comments which may be at the current point in the
input stream. This routine implements the comment and blank
deletion for .ID, .NUM, .SR, and other basic recognizers. INCS
first calls INC to get the next character and increment IW.

From then on, INC is called successively until INC returns with a
non-blank character. The nonblank character is then compared with
a comment character. When the end of the comment is located,
INCS returns to its blank-skipping loop.
Note that comments do get into the input window, but the
printer IW skips past them.

Before beginning any input dperation, the IW pointer must be
reset, since the program may have set NCCP back. The routine
WPREP computes the value of IBCK from NCCP-MCCP. This wvalue
must be between 0 and the negative of the window size. IW is then
computed from NCCP modulo the window size.

The program-library interface for inputting items from the
input stream consists of the routines, ID, NUM, SR, LET, DIG, and
CHR, The first three are quite similar, ID is typical of them, and
works as follows: First MFLAG 1s set false. WPREP is called to
set up IwWw, then INCS 1s called to get the first character. If
the character at IW is not a letter, ID returns (MFLAG is still

402

false); otherwise, a loop to input over letter-digits is executed.
When the letter-digit test fails, the flag is set true, and the
identifier is stored in the string storage area. The class of
characters 1s determined by an array (indexed by the character
itself) of integers indicating the c¢lass. Before returning, ID
calls the routine, STORE which updates NCCP to the last character
read in (which was not part of the identifier). That is, NCCP is
get to MCCP + IBCK - 1.

The '‘occurrence of a given literal string in the input stream
is tested for by calling routine TS8T. The character count and the
string are passed as arguments. TST deletes leading blanks and
inputs characters, comparing them one at a time with the
characters of the literal string. If at any point the match
fails, TST returns false. Upon reaching the end of the string,
TST sets the flag true, sets NCCP to MCCP - 1 + IBCK, and returns.
In addition to TST, there is a simple routine to test for a single
character string (TCH). It inputs one character (deleting blanks),
compares it to the given character and returns false, or adjusts

NCCP and returns true.

2. Stacks and Internal Organization

Three stacks are available to the program. A stack called
MSTACK (MARK-STACK) is used to hold return locations and generated
labels for the program's recursive routines. Another stack, called
KSTACK (KEEP-STACK), contains references to input items. When a
basic recognizer is executed, the reference to that input item
is pushed into KSTACK. The third stack is called NSTACK (NODE-

STACK), and contains the actual tree. The three stacks are

403

declared in the Tree Meta program rather than the library: the
program determines the 2ize of each.

At the beginning of each froutine, the location that the
rouitine was called from and space for the generated labels are
placed on the MSTACK. The routine is then free to generate.
labels or call other routines. The routine éehds by popping
up. the generated labels from MSTACK and returning to the location
on the top of MSTACK.

KSTACK contains single-word entries. Each entry will
eventually be placed in NS8TACK as a node in the tree. The
format of the node words is as follows: There are two kinds
of nodes, terminal and nonterminal. Terminal nodes are
references to input items. Nonterminal nodes are generated
by the parse rules, and have names which are names of output
rules.

A terminal node is a 36-~bit word with either a string-
storage index or a character in the address pprtion of the
word, and a flag in the top part of the word., The flag
indicates which of the basgsic recognizers (.ID, .NUM, .SR,
.LaT, .DIG, or .CHR) read the item from the input stream.

A nonterminal node consists of a word with the address
of an output rule in the address portion, and a flag in
the top part which indicates that it is a nonterminal
node. A node pointer 1s a word with an NSTACK index in
the address and a poihter flag in the top part of the
word. Each nonterminal node in NSTACK consists of a
nonterminal node word followed by a word containing the
number of subnodes on that node, followed by a terminal
node word or node pointers for each subnode,

404

For example,

TREE NSTACK KSTACK
ADD node ptr ‘\w
NSYMTB item
P (X)
2
Points
/ node ADD {€+——{ node ptr. to Top
X MULT of Tree
‘ ‘ NSYMTB item
D (Z)
2
node MULT |q

KSTACK contains terminal nodes (input items) and
nonterminal node pointers which point to nodes already in
NSTACK. NSTACK contains nonterminal nodes.

String Storage is another stack-like area. All the items read
from the input stream by the basic recognizers (except .CHR, .LET,
.DIG) are stored in the string-storage area NSYMTB. An index
into NSYMTB points to the character count for a string.

All the items read from the input stream by the three basic
recognizers, .ID, .NUM, .SR are stored in the string storage area
NSYMTB. As well as the character string which was recognized,
three other items make up the entire entry for any string. They
are a value entry, a flag entry, and an entry indicating the string

character count.

405

declared in the Tree Meta program rather than the library: the
program determines the size of each.

At the beginning of each routihe, the location that the
routine was called from and space for the generated labels are
placed on. the MSTACK. The rottine is then free to generate
labels or call other routines. The routine énds by popping
up. the generated labels from MSTACK and returning to the location
on the top of MSTACK.

KSTACK contains single-word entries. Each entry will
eventually be placed in NSTACK as a node in the tree. The
format of the node words is as follows: There are two kinds
of nodes, terminal and nonterminal. Terminal nodes are
references to input items. Nonterminal nodes are generated
by the parse rules, and have names which are names of output
rules.

A terminal node is a 36-bit word with either a string-
storage index or a character in the address pprtion of the
word, and a flag in the top part of the word. The flag
indicates which of the basic recognizers (.ID, .NUM, .SR,
.LET, .DIG, or .CHR) read the item from the input stream,.

A nonterminal node consists of a word with the address
of an output rule in the address portion, and a flag in
the top part which indicates that it is a nonterminal
node. A node pointer is a word with an NSTACK index in
the address and a pointer flag in the top part of the
word. Each nonterminal node in NSTACK consists of a
nonterminal node word followed by a word containing the
number of subnodes on that node, followed by a terminal
hode word or node pointers for each subnode,

404

For example,

TREE NSTACK KSTACK
ADD node ptr '\\
NSYMTB item
P (X)
2
Points
/ A\ node ADD | €{+—| riode ptr. to Top
X MULT of Tree
: NSYMTB itemnm
P (Z)
2
node MULT |g~

KSTACK ceontains terminal nodes (input items) and
nonterminal ncde pointers which point to nodes already in
NSTACK. NSTACK contains nonterminal nodes.

String Storage is another stack-like area., All the items read
from the input stream by the basic recognizers (except .CHR, .LET,
.DIG) are stored in the string-storage area NSYMTB. An index
into NSYMIB points to the character count for a string.

All the items read from the input stream by the three basic
recognizers, .ID, .NUM, .SR are stored in the string storage area
NSYMTB. As well as the character string which was' recognized,
three other items make up the entire entry for any string. They
are a value entry, a flag entry, and an entry indicating the string

character count.

405

<value
«flag
T
\ .
A k +string
T \
index to J
NSYMTB -+ 3 «character count

A search of NSYMTB proceeds from the bottom up--or the last word
stored. The bottom up search combined with the appropriate settings
of the flag entries facilitates block storage of variables, as

in ALGOL.

Tree Meta provides two routines for setting and testing
the flag-word in NSYMTRB. TURN is used to set the bit pattern of
the flag; for example, TURN(40,-40) would turn "on" the 30th bit
of the flag word in the last string referenced by ISTAR. TEST is
used to test for a particular flag; for example, TEST (40,-60)
returns MFLAG = 1 if the 30th bit of the flag word is "1" or "on,"
and the 31st is "0" or "off."

TEST and TURN are implemented as follows: if B is the first
argument and M the second (the mask), then:

TURN: FLAG = OR(B,AND (M,FLAG))

TEST: compare B with AND(B,O0R(M,FLAG))

Thus, TURN{40,-40) considers the arguments as octal numbers, which

when converted to binary and arranged as above, leave:

BIT 0 30 35
M o 011111
FLAG o 000000

0. .« . . s+ » 000000
B 0. 100000
FLAG 0. 100000

406

The test routine works in similar fashion as arranged in the
way described.

Other routines perform housekeeping functions like packing
and unpacking strings, etc. There are three error-message writing
routines to write the three types of error messages (syntax, system,
and compiler). The syntax error routine coples the current input
line tc the output and gives the line numbef. A routine called
FINISH closes the files, writes the number of cells used for each
of the three stack afeas (KSTACK, MSTACK, NSTACK) and the number
of characters read, and terminates the program.

At many points 1in the library routines, parameters are
checked, and if they are out of bounds, the system error routine
is called. This routine writes a number indicating what the
error is and terminates the program. The error codes are
listed in Appendix C.

Additional library subroutines generate labels, save and
restore labels and return addresses on MSTACK, compare flags in

NSTACK, generate nodes on NSTACK, etc.

3. Output Facilities

The output from a Tree Meta program consists of a string of
characters. The output facilities available to the program consist
of a set of routines to append characters, strings, and numbers
to the output stream.

A string in NSYMTB can be written on the output stream by
calling the routine OUTS with the NSYMTRB index for that string
in ISTAR. OUTS checks the NSYMTB index and generates a system-
error message 1if it is not reasonable.

407

A literal string of characters is written by calling the
routine LIT. The arguments are of the same form as TST.

A number is written using the routine OUTN. The binary
representation is given and is written as a signed decimal integer.

All of the above routines keep track of the number of characters
written on the output stream NU. Based on this count, a routine
called TAB will output enocugh spaces to advance the current output
line to the next tab stop. Tabs are set at lO0-character intervals.
The routine CRLF will affect a carriage return and a line feed and
CIO will reset NU,

The Tree Meta system provides a routine that is very convenient
for debugging. This routine, METSTA, will print out the state of
the system at the point of being called. METSTA will print the
information in the three internal stacks, the line currently in
the input buffer and output buffer, the values of the character

pointers, the symbcel table, MFLAG, ISTAR, and several other items.

408

A DETAILED EXAMPLE

CHAPTER 5

.HMETA EXAMPL (name of element on unit D)
% TREE-META PROGRAM EXAMPLE %
LLIST SOURCE

EXAMPL = !"MFLAG=1" !"ID1ST=2" % IN 1108 TRMETA, THIS FLAG (ID1ST)
MUST BE SET SO THAT THE PRE-DATA WILL NOT BE TRANSFERRED
TO THE OUTPUT STREAM BY THE 'EXAMPLE' COMPILER. THE MFLAG IS
SET SO THAT TRMETA WILL NOT FAIL AFTER THE FIRST STEST.
LOOK AT GENERATED CODE FOR EXAMPLE OF THIS %
"EXAMPLE" .ID % ID WILL BE THE NAME OF THE PROGRAM %
(FLAG/ .EMPTY)
NEXTGE ;

L T R R L T T T
THE FOLLOWING PARSE RULES PROCESS THE BEGINNING OF THEE CARDS %

NEXTGE = $ (STATEMENT *)
"END" 21?7 {\, "END" } .STPMTA()

STATEMENT = -"END" {\} =>.COL (1)
(COMMENTCARD/LABEL (GFSTA/FLAG/FORSTA)?2E ;

COMMENTCARD = +'C {'C} .SET() => .BLANKC() .COPY{() ;
& ~—SET AND COPY PASS STRINGS THROUGH TM DIRECTLY TO QUTPUT STREZ
~BLANKC TESTS FCOR THE REST OF THE CARD BLANK. %
LABEL = .NUM {*80} 1s(+' {" }) ?3E / 7$(+' ;)
FORSTA = ,CHR {*s0C} .SET{() => ,BLANKC() .COPY() ;
GFSTA = MAKEBREAK/LOCAL/GFOR:
E = .EMPTY .RESET() =>'; ${STATEMENT *) "END" ?99E {%., "END"}.STPMTA();

%******‘k**ﬂck*'k***‘k‘k*******:\‘**k*******k*****************************%
% THESE PARSE RULES BUILD A TREE %

MAKEBREAK = "MAKE " ASSEXP ?10E :MAKE{l}/
"BREAK " ASSEXP ?11E :BREAKI{1l} ;

ASSEXP = ITEM '* ?12E ITEM ?13E '= ?214E ITEM ?215E :TRIPLE{3} ;
ITEM = '? :FPLAGWORD{0} / PRIM
PRIM = <= .NJM '. .NUM :REALNUM{2} /

LNuUM

VAR /

"' +.CHR ?20E $(-'' 4+.CHR :DO{2}) '' ?221E .LIT{1} /

; {0 EXP 2?22E ') 223E :PAR{1} ;

500

VAR = .ID ('({ EXP ?30E $(', EXP ?31E :COMMA{2]}) ') :SUBVAR{2}/.EMPTY);

EXP

i

TERM ('+ EXP ?40E :PLUS{2}/'- EXP ?41E :MINUS{2}/.EMPTY) ;
TERM = FPACTOR ${'* FACTOR ?42E :MULT{2}/'/ FACTOR ?43E :DIVIDE{2}) ;
FACTOR = '- FACTOR ?40E :NEG{1} / PRIM ;

LOCAL = "ZOCAL" .ID :LOC{1} ;

Qhkkhkkhhhhhhhhhhhhhhhhhdhdhkhhhhhhdhhhhhhhhdhhhhdhhhkhhhhkhkhkkhkkhkhhg
UNPARSE RULES FOR THE ABOVE PARSE RULES %

o

BREAK{-} => "CALL BREAK (" *1 ') ;
MAKE{~} => "CALL MAKE (" *1 ') ;
TRIPLE{~,—,-} => *1 ', *2 ' %3 ,
DO{~-,-} => DOTST{*1} DOTST{*2} ;
DOTST{.CHR} => #*1:C
{-}. =» *1 ;
DIVIDE{-,-} =>» *1 '/ *2 ;
COMMA {-,-} => *1 ', *2 ;
PLUS{-,~-} => TNEG{*2} MINUS{*1;*2:*1}/
*L '+ *2
MINUS{-,NEG{}} => PLUS{*1,%2:*1}
{=,-1 => *1 '- *2 ;
TNEG{NEG{}} => .EMPTY ;
MULT{-,-} => *1 '* %3 ;
REALNUM{ .NUM, .NUM} => *1 ', %2

NEG{~-} => '= *1 ;

LIT{-} =» "7 *1 't ;
SUBVAR{.ID,-} => *1 PAR *2 ;
PAR - => "(*1 ') ;

FLAGWORD / =>» "'ggsg'" ;
LOC{-} => "INTEGER " *1 , "DATA " *1 "/'*LOCAL'/";

LR KRR R AR AR AR A I A A AR R A A A R AR R RN AR R A AR R AR A AR R KRR A AR AR AR RARRRRRARRAKRG
% THESE PARSE RULES DO NOT BUILD A TREE, BUT COUTPUT DIRECTLY

GFCOR = "FOR " ("BACH "/"ALL "/"EVERY "/.EMPTY)
FORASSEXP ?60E "DO" ?61E .NUM ?262E ,IDGOT()
2IDGOT PUSHES A COPY OF THE NUMBER ONTO A SPECIAL STACKS
{"CALL GFOR(LOC: +W .W ', *¥83 ', *82 ', *31 ")\ }
{ #1 , "CALL GINC(LOC: .W ",$" *50 ', *83 ', *52 ', *gl ")}
$(-.IDTST() STATEMENT *) % IDTST TESTS FOR THE NUMBER PICKED UP%
{~,., "GO TO " #1 -W }
LIDBK{): % IDBK POPS THE NUMBER OFF THE SPECIAL STACK %

FORITEM = '? .IPUT(5,5H'$$S$')/ & IPUT PUTS A STRING INTO
STRING-STORAGE AS IF IT HAD BEEN PICKED UP BY .SR %
I0 o/
NOM

FORASSEXP = ITEM '* ?65E ITEM 266E '= 267E ITEM 268E ;

%*******7’:*******'k***%

501

% THE FOLLOWING RULES DO NOT BUILD A TREE OR OUTPUT DIRECTLY:

USED FOR FLAG-SETTING IN THE 'EXAMPLE' COMPILER. $%

FLAG = DEBUG/LIST ;

DEBUG = "DEBUG" ("ON"
LIST = "LIST" ("SCURCE"
"CODE"
" OFF In
. EMPTY

'"DBGFLG=1"/ "OFF" !"DBGFLG=0"
IMLSTSRC=1" !"LSTCOD=0" /
! "LSTSRC=0" !"LSTCOD=1" /
I"LSTSRC=0" !"LSTCOD=0" /
IMLSTSRC=1" !"LSTCOD=1") ;

)

.
+

THEY

PR R R R R R R R R R R R R EEE TR E R R R EEEEEE R E R RS

.END EXAMPLE

502

ARE

C This is the actual "EXAMPL" compiler generated by TREE-META
C on the 1108.

o O HOR g ek B o AR R R kAR OEOR R R

. 1i08 TRLD - META
2o ok ey o ORI s s B R o sk R

C FLAGS AND FLAG CONSTANTS
INTECER Li?“f.~ %7
?.{“f??"c' (-3§5f -
IMTECTR
BATA TRE
Y f\v i f f £

{;A hOADRE

RS AR T
LGAOZ0 0000000600/
L(

TR ®

ATA rwﬁriﬁfv"%uwPGODUﬁ fi/
YRITO . g I

FRARE W PIE ¥

ATA HéfLthPws Wangpeoo/s
INTFols aFHNFLG

: ;Mi/nn}*uggﬁgeﬂgﬁ/
Il\qr.(:..i LG
ﬁA%A Ti?ai/onua;UﬁﬂhﬂHU iya

Te GMLEZ » CMLB2
,.‘.,?ﬂ-‘

{ é’iT.\“\
gr‘”r‘.?‘
GATRE s
INTE

CATA 11,4k/{fn4)h%337abh/
EHTEF ALK
.3*7.!”'3"35\4'/(';‘5?.”1 NROBORAS/

SRV SN T T 1 A5V

5G5/

C CHARACTER RANGE .
FEDGhy IV W {H0UL

503

INTEerR NSTAD) o LS

INTECER NVIT2)Y IV

INTESER NULLO0G),TU

INTEGER GET

INTEGER INCFLG

INTECER wRKe X¥RK
€ o ook gy 3k Ko K K o o o o s o8 K B ok S 5K 3k s o s o oK K K K K s 3 o ok ok Ok K

COMMON ALETFLG/LETFLG

COMMGM ZOCTFLG/OCTFLG ,

COMMON /INCFLG/INCFLG _ ~

COMMGN /DIGRFLG/DIGFLG

COMMON /CC/HMCCPsNCCP IRCK

COMMON ZONTZICNT NCNT

COMMON /MAXMIN/KSPMAX s MGPMAX , NSPMAX KEPT ,MSP T NSPY

COMMOM /MAGKS ZADRMSK

COMMONM /TME/ IME » ME

COMMCN Z/TERR/IERR

LCOMMeN /DRGFLG/DRGFLG

COMMeR ALSTRFLG/ZLSTCOD,LSTSRE

COMMON /FLGONS/PTRELG) ADRFL G, CHRFLG, SRFILG, GENFLG, IDFLG, NUMFLG

COMMOM /oNLE/GNLRL GNLB2 GNILR3, MAXGLR, IGN

COMME ZCHRS/Z TRMCHRyNCMMT » QTCHR , BLKCHR s BLANKS ¢t BLANKS

COMMGE ZNTAB/MTAR

COMMEN /MW /NW e TWe TXW e MW

COVMOE ZMSAMNSLXS

COMMORE ZMU/ZRU, TXE, TU

COMMON ANV, IXV TV

COMMON /FLAGS/IMOFLG, LLNFLG

COMMON /MTIGC/MARK,,CIW, SNGP e MGPLN, ID1CT

COMMON/LSSAVE ALSSAVE

COMMEN /METAS/MFLEAG ISTARPLS

COMMOP: /KT/KT,KTYX

COMMOE, ZT1GLARBZIGLAR

COMMOE /NCLASS/NCLASS -
Caekorok gopok 0ok okokok o otoiodoi ke ok THESE WERE PARAMETER STATEMENT%*************s

IMCFL G=0

MSPLMI=13] . k&

NTARZD

MAXOLI=32T767

KSPT1=1

MSP =

MG 1= '

PRC=¢ ' y

IXW=c 00 ' ‘

LXS=pg

IXV=7p

TRU=1 00
L****z********#*********+***

504

-
4
-
(&M
-
[GV
-

-
[AVE
~ 173
[
BLIh
g ow
~ N,
[N :
o -) [[48
[It . L [
o - e W — i
o o~ by m -
~ -~ ja Ry
AT S v 903 53]
= 30 W > pes
- - > T
= - L Tl - -
- [atIS - —~ —
i ~ L ~ fg i
< fe = = e =
[- o) R o~
BRI S W il [N
=~ ux e ~ — IS
SV x ped Ll i i
- e [A %
AU S o < =X < &=)
- 3 LI ol S i T W
0~ = [i U -~
Pow * 5 i ™~
P 0w B ~ i
- ~ oY #* oo]
W . ~ T e s - —
“xl al <L b) ; = =
N b Ll et A Pt gt
<7 oon : Y s o j
L P E -l N 2 et S
o e g [I B - i
aN wd TN e X GG P Ry
o ini Looe DT e 3 if it
j otz PRES RN ; £
<= i B Iy -
1 : P - = ed
L i Zi oy i =
D = L] O
ot L S B e Pt e B

505

AT 66 CALL FINLSH
CALL LIMITS
STOP EMDCMP

C EXAMPL

1017 CONTTMUF
MFLAGZ1
IF{MFLAGY » 32765,
N1sr=2
CALL TSTU(7» THEXAMPLE)
IF{vPLAGEQ. 03 CALL RIGERR
CALL ID
IF(MELAG.NE,0)CALL KPUSH(ISTAR+IDFLG)
IF(MFLAG.EQ. 0)CALL BIGERR
CALL MCALL($1059,%32764)

32Tel CONTIMNUE
MELAG=T
CALL MCALL(31068¢$32763)
Ar7T63 CONTTHUE
IF(rFLAG.EG.) CALL RIGERR
3aTOL CONTIMNUE
CALL MRTH
C NEXTGF
1068 CONTIMUE
32762 CONTIMUF
CALL MCaALL(B108U+,%32761)
daT6el CONT 1 MUF
TF(nrLAGY e 32760
CALL OUTREE
IForLAG.ECG.) CALL CERR{Z2)
32760 COMTTMNUF
IF(MFLAGY » 32762
MELAGz

IF(MFLAG)Y » 32759,
CALL TST(3:3MEND)
TERRz (1Y
IF{Hri AG.EG. 01CALL FRR{O}
CALL CRLF
CALL TAR
CALL LIT(3:3HEND)
CALL STPMTA
IF ML AGEQ,1YCALL BIGERR
3xTH9 COMNTTMUE
CALL MRTHN
C STATEMERT
1680 CONTIHF
CALL MPUSHIKT)
CALL MPHSHKSP)
CALL MPUSHINCCP)

ul
fevl
o

CALL THY (5,)
MELL umvwer'zuusf.?)
£ r‘(_r>._\,<r‘a,)u(T e

JuThY
J0TRE
}1°a$1?755}

32755 C’“

i un

CALLL
SpT753 CONT 3

IF (1

CALL

7 (2R ;')71-3“
M UDTOSG e 232T74LG)

TFAMFLAGY ¢ 9 32T74HE
CﬂLi MOALL{T1144, 930707

3747 COnTIMUE
Bz7u88 CONT TR
32756 COMT TMNUR

TERRZ(2)

TE ML AGLEG.) CALL CRR(T1157)
32752 COMNTIMUFE
22754 CONTyMUr

IF{MPLAGEG 0 CALL RIGERR
32758 CONT THUF

CaLt MR

C l;(}x:‘\t 1! Cf’\g\ﬁ)
11l fb»s?vur

IF (vt AGLEG.UICALL RIGERR
I5THG, COMNT 1M UF

507

G
Satt
STk Corry mue
ChLL COopY
RO L ACLEQ s CALL RIGEER
IpThE COnr e
CALL MR
O LABEL
i1e7 CONT Y

{,/\‘.{i Tt
fAr L‘.J'\G) ? :.u. THE
STr0 = (STARA “" :*<‘:“L,(;

UHHTTHTARY

\
ST RR=AND Y ?!r 4 ,M_"?J!‘-"si)‘;)
> b

H
= (At CTME s P FO,PTRFLEG) Cill CFRR(u)

P R T S S O
— o~

:44'

LD GUTS
il
i

O

1
A Sy
AL “i’Fl FHi=1)
GoThe o CONTY L
NGy Gz
CALL Tok{in)
IMCHy czn
. ti: S L"(r]?x.ln./tllv
CALL CTOQil)
S2THL CONT v
MOTACKAMER Y ZETATK (M5 + 1
ari WNTACKRIMED YRR T767) s 327450
H‘(” L“Uv)?#‘i’/““‘
‘ S0 LOF S LI MFLAGEL

P

B4y
32759 TS TURD)

SUPCALL FRR{<1152)

B2T45 <<w~~'i
(..» d’» i. _\/\ ‘u’
L/Ll i\fl”iun\"}.)
GaTHYE COmy el
Ty ¢og

CALL ToH{aR
10G

M Gmn
Ii: {:\riz\w} ? 39.‘,-’-?‘(»3
ALY Croteh)
by .T;:l'f‘l (('{‘ 1 '\i‘klr
MGTZ R G ZRGTACY (MG)4

508

=

.

39

el jo:ed

e e o -

' [ER] XX} =
< 0

try
o
o oo
e fon)
i o
i~ R
o o
P ——
- |
. ")
Z Yol f
< R
Pt e L
Ll e e
P - Pood i
L : 7 AN Rt
= 3o b K2 R Y O o=l O
. [

L g (i OO <
N N TS NS I B O 5 I I 4 145 B35 BT R A O ¢

G oar e8] = QA =i M3 78] O 20 G2 O

W ¥ i) Do L\ [3 L D e QY [YRATEAN| Ay

i~ I~ L =f i~ P~ B~ O™ i~ i~ [Sl Lo

[V N d N Y o 1 o o OF O N 4
3 39 A}

3 SR

3

509

L
EARIE AW
~1 ~}
Ay R
BSEN

O
2
~
na
H

3270

HeT2hH

CALL PREGET
IF(rrLAG.EQ,0)CaLL RIGERR
CONT YU

CﬂLL TeH{IHE)
IF(ErLAGY e 32723
NCOPzHCeP4 1

GOTO 32724

CONY TMUE

CONT 3 hUF

CALL MCALL($H10RU»$32721)
CONTTHUF

IF (Lo LAGY s 327200

CALL CUTREE
IF(MFLAG.EG, (1) CALL CERR(Z)
CONTTMUF

IF (eI AGYe s BRTR0

MEL A=

IF (el A FG. 0)CALL RIGERR
CALL TST (3, 3HEMD)
FTERtwa)
IF(MrL A EG. 1) CALL FRR(®115D)
CALEL CRLF

CALL LIT{3, ZHEND)

CALL STPMTA

EF(W?M“GQ5O NYCALL mIGERR
COMT MlEe

CALL MPTH

C MAKERREPK

1198

Wt
e L
SETLL

COorry T MUs
CALL TSTASG SHMAKE)
RO An) s 32719,

CHRLL MCALL{(S123R,932718)

COT rHilE

Thitizo1iny

??(f:zfratl PO L ERR(eila)
Chit SR IR RN

CALL i

IR AR TSP O I

TF sl fn 66, 00t FRRETLIISY)
CAd ML B{RI2Te

Attt sl

510

[CHR e
hY:

;-x

=71
T A

\g (t\

 ASSLxl
1234

32734

(]
P2

~4
e
[

32713

L OITEM
1279

32710

Sa7408
32709

C PRIM
1230

e g i v i Sidid B
o 5 B »-ﬂuﬁ#»*ﬂnmﬁ.‘aum J-——,,,_g,hd “wﬁhﬁa‘¢g e v e

vy
§
L

‘“;,‘
COprvyiig

COHTHUR
CALL HRTHM

CCONTIMUR

CALL MCALLA{B1270:532714)

COMT VR S
TFLFLAG) 0 327130

CALL. TCHIMH%)

ITRR= {12 _

IF i a6 EGL.0YCALL FRR{S11S)
CALL MEALLIS1279:,%3271L2)
COpfy =~ MUF

Rz

IF(MPLAG. DR Call Fﬁp{rilJP}

CALL T LMz

Ibfp=oaay

IF(MELAGLEG, Y CALL FRR(31152)
CALL rCAuL<$}c?0evoz7i)

COMNT TN

TL“““(iH:

IFMrLAG DG, My CALL “P‘{%ii 23

CALL MDLB{B1308)
CALL_MRMD(e}
CONT T NUF

- CALL MRTN

CONT IMUE

L.i‘xi_t. ToH{1HD)
TF{MFLAGY 2 32710
CALL MNDLB{21319)
CALL MENDI)

GG 1o 32769
CONTIMUE

CALL “CALL($I33Urb32708)
COMTINUF

CONT ThUE

CALL MRTH

CONT { HUF
CALL “Av
CALL MNum

?F‘P*anﬂvf (3CALL KPUSHIUISTAR+MUMELA)

E e L!\h; e 22707

CCALL TCHOLL)

FOMPLAGY ¢ 32706
CALL i

1

TF{MPLAGME U CALL KPUSHIISTARTMUMFLG)

511

@ v—

35705
32706
32707

32702

32699

€
A
’_}‘
o]
~

TF O LAGY s 32705,
CALL MDLBIBLIRLG;
CALL MRNEE2)
COMNTTMUE
COMTIMNUE
CONTIhHUE
CALL RSTR
TF{MPLAGY s » 32704
CALL MUM
TF (LA NE G CALL KPUSHITSTARSMUMELn)
IF (ML AGIe e 32703
CALL MCALL{BIAUG SB32702)
CONT TMUE
IF(MPLAGY e 32701
CALL TeH{IHY
IF(MELAG) e 32700,
INCFILGz
CALL CHR
IF (MPLAGNE,) CALL KPUSHIISTARSCHRELAY
INCrL 6z0
TERM=c2m
IFeMrLAGLEGQ. NI CALL FRRI$I1S2)
CONTIMNUF
CALL MPUSHIKT)
CALL MPHSH{KSP)
CALL MPUSHINCCPY
CALL TCHELH)
MELpoaMaDIMFLAGHT 2
MCCIloMPOR{ISTURD)
SR=uPOP (ISTUPD Y
KT =mPOR{ISTUPD)
ITF{MFLAG) » 32698,
INCFLGx=y
CALL CHp
TF(MFLAG.NE 3 CaLL KPUSHIISTARSCHRFLGS
INCI Gz
IF (sl AG EG. 0 CALL RIGERR
CALL MDLBISIRRG)
CALL MruD{2)
COMT M
IF{MELAGY 0 0 32600
MELAGTL
IF{MEFLAGEGL. ICALL RIGERR
CARLL Tohidivied
TERPE= (291
IFirrLag . FGoyCalL URRIsIISS)
CALL PDLBOSITGT
CAby, MERDIL)

512

32096
22697
VWA K]
2703
To4

R
Ny
.I

4

Do T

(] O (3

WR

}....!
&Y
o«
o 2

o
[6)
e
<

s
(OFAY IS

CONTTHUE

H
NﬁLH\S;.

CALL MKND{1;
CONTYMUE
ConNT ;
CONT T MUE
CONT =
CONT a3
CALL TN

CONTINUE
CALL ID
ir Tl P\()(’F\;L-Dt }

EF{%};APJ}3269¥v
AL ToHtIH
-iniﬁG.r32L9

H

i

G\
Lr!

?

ONTINUE
El'f'zn...(,{‘ﬁ \
IF (M LAG.EQ

COMT I NUE

0)CALL

CALL ToHMOAk;)
IF{MeLAGY 2 32690,
CALL, MCALL{%3373:%3

COMTTMUR
TERRB=Z (31
IF{MELAG.EQ. 0 CALL
CALL MOLB(9 l“P?)
CALL MKMND(2)
COM',JUF

:%!A Ve v 32691
R”L_/\u

Lr;vPhA:oE@uO)“QLL
CALL Toh{LH))
Ii’"(\‘ LMG@EOeU‘ICﬁLL
CALL MDLBI{SLL16)
CALL W(WD()
CON'IT\U o

KPUSHUISTAR+IDFLG)

C
T
CAlL MCALL{%1373,432692)
-
A

ERR{$1152}

2689)

ER R($1142)

xe
bt
&
n
e
el

3
b
(73]
in
Py

27600

IEGLE

aR682

3683
3p684
ALHRT

C TERM
1423

32681

32679

32677

22678

E)

ML A
Cory
CALL

COprT MU
MCALL {31 4230532688)
Ll v e
T LAGY s BRAB T
CALY

L ol Y
VR

94
poMCALLES1372,332685)

Pt

Pt

v e g fam
Pabad

i .!,‘,";wé RS R LY
GO To 3ps
CONT 1R
CALL TCH{1H=)
IF{MPLAG)Y s 32683,

CALL mMCALL($1373,%32682)
COMT Y MUE

IfR -y

IF{vr LA EG.nICALL FRR{Z1152)
CALt MDLPRI21e48)

CRLL MEMD(2)

COnT e

MEL 2oz

COMTTMUE

IF(trLAG.EQ. 1) CALL PIGERR
CONTTMNUE

CALL MPTN

i

CONTIMUF

CALL MCALL(%1457+$32681)
CONTIMUF
IF(MFLAGY ¢ 32680,
CONTIMNUF

CALL ToH{1H=#)
IF(MELAGY 1 32678,

CALYL MCALL(B1U48Te$32677)
CONT 1NUF

TERPE= (40
IF(FLAGLER,YCALL FRR{%1152)
CALL NMNDLB{$1469)

CALL MRND12)

GG T 30676

COMTIRUF

514

32674 ;
i 2}
C
C
32678 C
Au87H (i
I ﬂb)seﬁ AL
M L!" (:—J
*k(MFMAUuEGaU)CAL; RIGLQR
32680 CONTIMUE

CALL MRTN
C FACTOR
1u57

53 ST
CALL. MCabig 157043206720
CONT Y MUE
TERRz(um
IFMFLAG.EG. 0y Calll ERR({91152)
CALL MNDLB{SLILBY);
CALL, MEND{1y
GO Tn 32671

0
N

o
-4
™

30673 CoOnNTIMURE
CALL MCALL{$1330¢%32670)
32670 CONTTNUF
32671 CONTTMUE
CALL MRTN
C LOCaL
iz06 CONTTMUE
CALL TSTIS,BHLOCALY
TEOMPLAG) 2 5326069
CALL ID
IF{mpri A Mo, 03CALL KPUSHUISTARFIDFLG)
J{Ff‘\‘]’:! \C thh}\,ﬂLL 1:!!.Cl &P ’ S
CALL MDLE(SL1L95)
CALL MRND UL
32669 CONTTMUE

CALL MRTN
C BREAK
1272 CONT MU

TFNCMTUNE L ICNTY MFLAGZO
IF(MFLAG) 5 32868,

515

IMFzeD vy
CALL DOTT(332667)
3z667 CONTITHUE
IF(MFLAG,EQ,) CALL CERP(1)
CALL CTO(1H)) '
30668 COMNT (HUE
CALL MRTM
C MAKE
1650 CONTIMUF
CALL LTGH
e

e

N W

f]

T3 Y e O

o

ICHTY MFLAG=O
s "

At

A

LY

P S

Y
” FAALY E
Bonel SOMT Rl
Az6ez CONTINUE
SDEGGH COMT 1tE

516

=0

. CERR (&}

£, CHRFLG)Y MFIAG
RELGY Cal

LGy o
D) =FLD (30,60 TMED

0
Y

CHRF
FLAGE
i

e

o =

N

- o

b el -

e =~ [

- = 34U

7 [SaaNe [N E

L2 i O e

< ed s 1) — ok

N T TSR A

- [IR W]
e 2 iy et A\ =
o OoZ oz o O D
i~ 3 NI 0 I IR |
P PR = (L PR PR

=L i — b il
= L e T e S
. - o4 = 3=
< L RIS o B I
G ed a5 SR S0 RN &0 JN G- BE 8 LA

O G 19} HERtgmty) O . 9] ey}
S o NI D 32 e o)

517

¢ n

168

U

;T,NH,ECNT) MELAG=6
ARY 932051,

{1
CBOTT(ER32650)
SenB0 CUNTThiF
IF{x.!AG ¢ B32HUQY,
CTQLiH)

T2}

POTTLH3264R)
Sr4n Seis
AFEHG HY
Irabhil U

£y
T

mAG

w"? i ? LG Joos

e

g dred Bl deed e

|
Rt 46 CoOnNTIM
’L“e s) P\U“x“/in ¥

‘{:AL CT{/fl}Qy}

{
Y TG XR0600)

518

=0
=0

3
MELAG

}
j
%

e o] G~ Ea
23 ! « b -
0 k] oY 22 =
d 8] (oA R L
N B} Sl
=2 x wed ot
p ~ . & iy
- o = P e R
o L N L TEE TS I T I T B
v [RIS I o PR O
o SR PN S S I
[el Rl i il [
—t P el i s R e S IS
et A E L EAE - 4 ~—
< LD S O < Ol QO e <DL <
& cCLOoLOUL G i WL) 0

INUS

poy i) (NP END]
) O
N [$Y O L
s8] i8] 3 I3 i)

(&)
I2640
&

G
&

&
S26k3
r\’K

iIn4E

o T
S RCIO R
519

[It

~

7,

MELAGY »

CERR(3)

1
i

L TME S, PTRELOY JNFLRTRFLAYCAL

{EI2633)

CTollzg

LNy
<3

O

i3

3p
ul
ﬁJ rm
3

v
i
“
i

;\:Ex‘ 1

dmmelTegd)

2
1

(B326207

4

T 7
H

2y
v

e

CALL,

g3}

fte:

8

i

CONT T RL

~
L)

LN

h¥]

o
N,

b}

AP

G2

ey
[

THNEG
UIO

C

L

i

027

¥

-4
EadiY

Iy
i

MELAG

1

et

i
A
et TS
oA
>
L]

i
o
XS

§S
hp]

166G

520

9]
Nd

2

A\

0

0
=6

-

FLAG

MFLAG

N

‘

LGy

b ME LN

i

MELGS

L.

1

3} o ME N

I

[

LACz

-
[

A

1

'
\
/

ACK KT
o ToNTY
521

o 1
[
M

|

o
AE

ENASY

A
oo

L

A

1

i

A
i

!

ON

i

.

(

Q

32620
8

1}

B e

¥ owd e

“r

L3

.

[§

=
e
el

i
A%
WJlf

522

o

g E

Sp608

[

3
)

s
¥

FLAGY

C

oy

oG
i

O
=
a
e

1495

A

P,

y
b

i
D

3%
!

607

D]

il
N

C G or

o1

MFLAC

523

STARS UMyl d

il

o

524

[
O
On

3

<5
o
o]
&
el

H

i
i

‘

~
[

e

Sl 0

AT e A

FORITEM

4
~

C

N

1)

T SR e, e s nin

{
L
|
‘ dt - <
k ¥) o —d
£ ; “ — 39
E L PR
Bl - e
% -t =
“m T +
i 5l o
ﬂ. ﬂtM — - Lol \nf,
= i [b~ i Oy 4% Y
i N N e) 0 n
-4 4 L] Lt D Lol
R — ey d L
ey = o ¢ o ~ o~
¥ w1 o ot e et o w0
: o) e} o et o o s8]
a ol Ty o o i §
B o . T c i 1ol o o

5

o . o
1 "] - -
oo - e vt e e
o 1 i <o it o
ooC ™~ w I Col o
— O — s [Bt
Eoy o - <3 O e
v . 2 I ot - . & MY
: . ko d = - e [C] ~ o
i o Z & wd i L) 4 -3
59 * o~ A -~ e [= wd -~ . =
i TR U i T L Rl ol P B TS A R DA A= SR PER T)
DIl T pNE e £ L3N A & Rae BEC W S S i et
Ll s IS L LY EaELdE I I
T S o T [£l i - e LE T e
e g EDRDSIP ISR S L s e ok SRV S S S S A S S S
T e = A o QR A S RN e QR (s i
S I TIR T R S D o O G OIL = O G
W2 O 0 0O O WD Vet P2 DO D U0
| L |
3] Wl
1
. .m r.u. (&
¢ = S =
3 . -~ - ‘v -
N = ¥ &y = oM < o w3 o
: - AN G- 3 VLN B R o S5 2o BTN
13 fo] 3 B Vo . -y ey -
) W ﬂq. L [19 [SU e [PORIVS] PR IENS]
- o N O € i fing O YRt 2
b [3 he] Yy] ot oy hERe] LD eed
H
.
"
ot
i

526

i

PR
RN W

o
&)

b
3

o
98]

ed (3
- P~

METN

CALL

ton
I

l‘\
i

E

O0Oan

QOO

333

LANGUAGE STATEMENTS

EXAMPLE TEST (name of element on unit D)

LIST

SOURCE

INTEGER PART,COST

DATA

/PART,COST/'PART', "COST"'/

MAKE ASSOCIATIONS

MAKE
MAKE
MAKE
MAKE
MAKE
MAKE
MAKE
MAKE
MAKE
MAKE
MAKE

COST#*'HOUSE'=0

PART*'HOUSE'="WALL1'
PART* 'HOUSE''="WALL2'
PART*'HOUSE'="'WALL3'
PART#* 'HOUSE'="WALL4"'

PART* 'HCOUSE'="'RCOF'
PART#*'HOUSE'="FLOOR'
COST*'WALL1'=200
COST*T"WALL2'=300
COST* 'WALL3'=200
COST* 'WALL4'=300

MAKE COST*'ROOF'=295

MAKE
MAKE
MAKE
MAKE
MAKE
MAKE
MAKE

COST* 'FELAQR'=300
PART* "WALLL'="'WINDOW'
PART*'WALL1'="WINDOW'
PART*'WALL1'='WINDOW'
COST*"WINDOW'=50
PART* 'WALL2'="'DOOR'
COST*'DOOR'=75

MAKE PART*'WALL3'='FIRPL'

MAKE

COST * 'FIRPL' = 200

CALL COSTS FOR ANY ITEM IN HOUSE.
CALL GTCOST ('HOUSE"')
PRINT 333,ICOST

CALL

GTCOST (' WINDOW')

PRINT ccc,ICOST
FORMAT (' COST=',I6)

BREAK TREE

BREAK COST*?=
BREAK PART*?=

STOP

LaV AR (V]

C SUBROUTINE FOR COMPUTING COST OF ITEMS

c

SUBROUTINE GTCOST (ITEM)
INTEGER ITEM

LOCAL X

LOCAL Y

LOCAL Z

ICOST=0

FOR EACH COST*ITEM=X DO 100

528

TCOST=TCOST+X
100 CONTINUE
FOR EACH PART*ITEM=Y DO 200
FOR EACH COST*Y=X DO 300
ICOST=ICOST+X
300 CONTINUE
FOR EACH PART*Y=Z DO 400
FOR EACH COST*z=X DO 500
ICOST=ICOST+X

500 CONTINUE

400 CONTINUE

200 CONTINUE
RETURN
END

529

APPENDIX A

UTAH TREE-META CONTROL CARDS

@A RUN ARCHIT,496802,2,98,,12 SHERIAN U **ARPA** TRMETA 'EXAMPLE’
"DPR
HDG GENERATE 'EXAMPLE' COMPILER
ASG A=SCSC3s
ASG C=8CS8C18
ASG D
XQT CUR
IN A
IN C
TRW A
TRW C
A XQT TRMETA
*

D DD DD

COMPILER SPECIFICATIONS
(PRODUCES A COMPILER ON UNIT D WITH THE NAME AS SPECIFIED:
IN THIS CASE, 'EXAMPL'.
*

@ XQT CUR

TRW D

IN D

TRW D

@IA FOR,* EXAMPL,EXAMPL

4 XQT EXAMPL
®

LANGUAGE STATEMENTS
PUTS OUTPUT OF COMPILER ON UNIT D WITH NAME SPECIFIED:
IN THIS CASE, 'TEST'.)
*

@ XQT CUR

TRW D

IN D

TRW D

@IA FOR,* TEST,TEST

APPENDIX B

RADC TREE-META

Several of the special characters used in the Tree-Meta
metalanguage used at RADC differ from those used at Utah and/or
as used in this paper. The "@" replaces the "?", the "<"

wrn
.

replaces the , and the "t" replaces the "A". The new IBM
keypunch referred to as the "GE keypunch" should be used to punch
all Tree Meta programs for ease of punching and reading.

At present the RADC version of Tree Meta is available in card
form only as a set of binary element decks. This set of decks
includes themain program and all supporting subroutines. To
generate a compiler using Tree-Meta, the following deck arrangement
is suggested:

S IDENT (regular format)
s OPTION FORTRAN

TREE-META BINARY DECKS

$ EXECUTE DUMP

$ LIMITS 99,40000,0,10000

$ TAPE 03,AlR,,XXXXX,, 'NAME'03
COMPILER SPECIFICATIONS

$ FORTRAN LSTOU,COMDK

$ TADE S*,AlD, ,¥YYYYY,, 'NAME'03

$ ENDJOB

* % X EOF

where XXXXX and YYYYY are five-digit magnetic tape numbers and
"NAME' is programmer's identification.
To execute the generated compiler, the deck arrangement would

be exactly the same as above with a binary deck of the generated

compiler replacing the binary deck of the main program of Tree-Meta
(the new compiler uses the same support routines as Tree-Meta)

and the new language statements replacing the compiler specifications

The following list 1is a collec numbhers printed

by the Tree-Meta system. An error numbor & pranred by the system

when an error occurs while processing b spacilications, and

]

an error number is provided in the Tras-Mzia sageoiiig Therefore,

b de e en o
S LONS .,

the following list is a reference srom ! he ervey oombary o the Tree-
Meta rule name which was processing Lhe uher s wmewsianguage statements

when the error occurred. Hepefully., theo, the psruicuiar cause of

the error in question can be determinsd oy cuompsy oy the metalanguage

statement with the requirements of

TRMETA

ERR -

refers

Lo
[

b he

rainted

the error,

[PRAEEY

L TEMS

1. 2.

2. TRMETA i3, ITEM
3. RULE ., 1TEM
5. RULE 35, ITEM
6. RULE 36. ITEM
7. EXP 39, ourT
8. EXP 40, ouTT

14,

EXP
NOBACK
NOBACK
NTEST
NTEST
NTEST
NTEST

41,
42,

ouTT
GENU
GENU
GENU
S1AE
GENE2
COMM

1l6. NTEST 53 COMM

19. STEST 54 517

20. STEST 55 5174

21. STEST 0, CLOSEPAREN
23, STEST A CLOSEPAREN

24,
25,
26.
27.
29,
30.

STEST
STEST
STEST
OQUTRUL
QOUTR
OUTR

CLOSEPAREN
ERRORY

E

STEST
STEST

The following is a collection of error codes generated by the
Tree-Meta support subroutines.,
CERR = refers to compiler error
SERR - refers to system error
CERR(10) OPPS . . . FAILURE OF STEST AND NO ERROR PATH SPECIFIED
SERR (113) REFERENCE TO KSTACK IS LESS THAN O

SERR(13) REFERENCE TO KSTACK IS GREATER THAN MAXIMUM DIMENSIONS

SERR(18) REFERENCE TO MSTACK IS LESS THAN 0 (GENERATED EITHER THROUGH

AN ATTEMPT TO POP MSTACK OR THROUGH AN MONITOR RETURN TO
ITEM ON MSTACK)

SERR(12) REFERENCE TO NSTACK IS GREATER THAN MAXIMUM DIMENSIONS

CERR(2) THE REFERENCE TO TREE IN NSTACK DOES NOT FIND A POINTER

TREER - REFERENCE TO TREE POINTS BEYOND BOTTOM OF NSTACK (OUTREE)

SSERR - ATTEMPT TO QUTPUT A LITERAL THAT STARTS LESS THAN 1,
ENDS GREATER THAN 120 (SSERR)
NSPERR - PREMATURE END OF FILE BEING CURRED IN (OCUROF)

APPENDIX D: TREE~META SPECIFICATIONS

TRMETA=("QMETAG LID?1?SIZE :BEGIN[Z] /¥ .CONTINUE"!"IDlst=2",ID21? "MT[0]}

(LIST/,EMPTY) :SETUP[1] * ${ RULE * !"LSS=LSSAVE")
" ,END" ?2E :+ENDN[O] * ;

SIZE = '(SIZ $(', 8IZ :DO[2]) ') ?50E / LEMPTY :SIZDF[02;

SIZ = .CHR '= ?54E .NUM ?55E :8I%S[2];:

RULE = ,ID

: { '= EXP ?3E{"&&" :USERID[11/ '§ :KPOPK[l]/.EMPTY) :0UTPT[2]/

'/ "=n" 23F GEN1 sOUTPT(2] 4
QUTRUL :0QUTPT[2]) ?BE ': 26E ;

EXp = "<~" SUBACK ?7E ('/ EXP ?8E :BALTERI{2] / EMPTY :BALTER[1l] /
SUBEXP ('/ EXP ?9E :ALTER{2],/ .EMPTY)};

SUBACK = NTHEST (SUBACK :DOIl2} /.EMPTY; /
STEST (SUBACK :CONCATI[2] / .EMPTY):

SUBEXP = (NTEST / STEST) (NOBACK :CONCAT[2] / . EMPTY);

NOBACK = (NTEST / STEST ('? .NUM ?10E :LOAD[1] (.ID / '? ;2ZROI0]) ?llE
:ERCOD[3] / .EMPTY :ER[L]} i
(NOBACK :DOI[2] / .EMPTY:

NTEST = ': ,ID ?12E :NDLB[1l] /
"I (.NUM "1 ?14E :MRNODE[1] /
CENP '] ?52E {'A/.EMDTY :MT[0] :DO[2]1) 1} /
'< GENP '» ?53E ('A /,EMPTY :QUTCR{OQ}] :DO[2]) :TTYI[Ll] /
v .GO[01 /
LIST /
"=>" GTEST ?15E :SCAN[1] /
COMM:
LIST = ", LIST" ("SOURCE" i"LSTSRC=1" !"LSTCOD=0"
/"CODE" I"LSTSRC=0" | "LSTCOD=1"
/"OFF " I"LSTSRC=0" !"LSTCOD=0"
/ <EMPTY I"LSTSRC=1" {"LSTCOD=1") ;

GENP = GENP1 / .EMPTY :MT[0];

GENP2 (GENP1 :DO[2] / .EMPTY);

GENP1

GENP 2

Il

' ('S .NUM ?51E :PAROUTI[1} s ,EMPTY :ZRO[0O] :PAROUTI[1])
('L 0L / 'C :0C / 'N :ON / ,EMPTY :08)[0] :NOPT[2]/ GENU;

COMM = " . EMPTY" :SET[0] /
'{ (.SR :IMED[1] / '(IPST?52E') :IMED[1])?53E ;

1TsT

i

(.SR/'\:ICR[O0]'y :ITBI[O],/ ''+.CHR / "#1":ILB1{0] /

"42":TLB2[0]/ "#3":ILB3[0]/
'$.ID :IN[1]) (ITST :DO[2]/.EMPTY :MT[0] :DO[2]}.

STEST= ', ,ID?1O9E{((+'(("):MT[0]/INSIDEPAR:LOAD[1]"')?191E)?2192E) :CALL[:
/ JEMPTY:PRIM[1]),
.ID :CALL[1l]/
.SR :8TST[1] /
'(EXP ?20E ') ?21E /
'+ STEST ?25E :INS[1] /
"' +,CHR :CTST[1]/
(.NUM'S ?23E/'S$:ZRO[0]) (.NUM/.EMPTY :IFIN[0]) STEST ?24E :ARB[3] .,
"__" gTEST 226E :MNTST[1] /
'~ STEST ?26E :NTST[1l];

INSIDEPAR = !"CALL IDSET" CLOSEPAREN !"CALL IDGET" ;
CLOSEPAREN = => (,COL(72) ERRORl1/ ~--')/'(CLOSEPAREN ?10E ') ?11lE

CLOSEPAREN ?12E) ;
ERROR1= | (""PRINT "#1/#1,"FORMAT (' NESTING OF PARENTHESES IS WRONG')"\)

I"CALL RESET" => '; $(RULE *) ".END" ?99E !"CALL STPMTA";
OUTRUL = '[OUTR ?27E (OUTRUL :ALTER[2] / .EMPTY) :0SET[1]:
OUTR = OUTEST "=>" ?29E OUTEXP ?30E :CONCAT[2];

OUTEST = (('] :MT / "-]" :ONE / "-,-=]" :TWO / "-,-,-1" :THRE) [0] /
ITEMS '}) :CNTCKI[1];:

ITEMS = ITEM (', ITEMS ?32E :ITMSTR([2] / .EMPTY :LITEMI[1l])

ITEM = "- :MT[0] /
.ID '[?33E OQUTEST ?34E :RITEM[2]/
NSIMP1 :NITEM[1l] /
'. .ID ?35E :FITEM[l] /
.SR :TTST[1l] /
"'+,CHR :CHTSTI[1] /
'$# .NUM ?37E :GNITEM[1];

REST = OUTT (REST :0ER[2]/ .EMPTY) / GEN (REST :DO[2]/ .EMPTY);

.ID '[?39E ARGLST '] ?40E :QUTCLL[2] / '(OUTEXP ') ?41E /
NsIMPl (': ('S :08 / 'L :0L / 'N :0N/ 'C :0C)[0] :NOPTI[2] /
.EMPTY :DOITI[1]);

QUTT

ARGLST = ARGMNT :ARG[1l] (', ARGLST :DO[2] / .EMPTY) / .EMPTY :MT[O0];

S A S S T T A B
LTS L O S 3 T S

N4

- 1y

H

2

BT

s

[s__; -

P

P

[

B

AC

]

g
1

Iy

(M

o
i~

-
]

EA

SRS AN

t

o

.
= -
= .- bl
Ll ~ faY] .
b= # “
e -~ and

> & — v
. N 3 = i
et H«: Mot g

3 &3 r *

— o X

#
4
S

o i an . s - e
5 od o -~ it g o
N = kS 4 33 -~ L 72
pd [} 3 o]) -
iy il e |5 e = =8
k v . = [=) ey o X7
— i —~ N o7 -
A -~ PR [a¥ et e = -
- o b - *® ¢ (] [4 o
gt = v s #* [3 =<
53] it it e ot . et - [e
o o b4 —~ L: i w3 o
- = I o (@] - L= fon ~~
m. - i .(V\M s 4 1 = s
=) e i u - U T "
> -~ oL e e o ~ > vt
[-~ “ o * = i e e e U #
- = . b et e —~ L el s ta “Z, et
i = - ~ e e B i - — - - . &
- Zo s] fer r e o - S WY oo o T e =l
- - LY 1 o v - x = oy sa @ £ e s s
- - : ~ e O - OJS J T el e 3 14 ~—
L =i -~ T Y = SR T S = Sl N LR
- — kg : ey i sty o ° [s Wl P b - < [L
< red = ® e [- O i = - e~ i - it b
e e - - e i o =2 <o = S P n— e i - =
o o [. [i [P i ¥l | S Fe < RS -
< 50 prag g - i el L o3 e LD b Ll [b= - -
[e i & = hard o ey i Ll ~t ¥ Rl [[V B [}
L -~ +* L ant o A -~ R — g < e i — e = i — ~— ki -
- ey - - 3 - -~ o B ot - NPRES oL < il e Lae ad o hae
> B —i = P 3 4 = <3 i~ pregiving H O B = < - -
f - — = o~ &N 1 * - [hot =12 3 oo i (] — -
- oo . S i 13 = P L -~ =~ 2 n ad ey . <<
— e << b o e s s o - A e - - # ity o
= (&) =3 L = o = (] il £ - il i N~ [et
> =z jaod ** o (@] L4 ”~ 3 = - % itz N wnd ~ P -~
Fal - — t— jot o ~ it - o H H® i ®
2 [1} I T B = i il A ¥oou Fa) LR N\
- M pes P i o ™= = §hd i - il AN o~ u A d ~ it
-] N 1 - I i it = 1 Vi 1 g il
Fay N i ~ s N H s § o [et ha i o] - o Et
i f1 — - H H H fem H H I - — o t 1 ~ i
2 H d ™~ o [o~ - fd H -~ [i — i H v
- - s L L ~ ~ = ey i o - - “ad L0 [[
- . bl - [58 15 i - i — o < p K A . b
- : La | - - pd . -~ o P [z 3 i o o - <
1 — I . g = = i~ i a = et il 2z e i - i 4 P
L 58] et L o b~ - i e Zr jod “Z - - 4 - W s [l (")
-

AL

p 0

(O

-~

i

s

x4
.4
o
-
ven, - il
Er. =
<.
F .
. B ik
-~ P
o
-~ R
z]
s i
=
" "
ad
(& o8
T E
:]
[
i
- 3

n -
~ ‘e P p— -
i ‘ =3 : -
s ; I i .
s o } et .
.
= -d o
. o B <
< o oW <
<7 i i oLl -
4 [o o R
] i I
o - ~ A T o w»
(- il it et
= s N ¥ L o
N A . —y - . .
& Vi it H 1 omn 1
i
~ S ~ [- :
I ;
v rre T
et o il
™~ “ e w
i i i
= ' - o
Py g pon £
— L, el D

o v
FIN I

S

s
I

ral
A

S

R

..l
T
Tl
:
NP
-
ol
-
-
.
i
s
i

@

Fa WA
iy

BIBLIOGRAPHY

1 (BOOKl) Erwin Book, "The LISP Version of the Meta Compiler,"”
TECH MEMC TM-2710/330/00, System Development Corporation, 2500
Colorado Avénue, Santa Monica, California 90406, 2 November 1965,

2 (BOOK2) Erwin Book and D.V. Schorre, "A Simple Compiler

Showing Features of Extended META," SP-2822, System Development
Corporation, 2500 Colorado Avenue, Santa Monica, California 90406,
11 April 1967.

3 (GLENNIELl) A.E. Glennie, "On the Syntax Machine and the
Construction of a Universal Computer," Technical Report Number 2,

AD 240-512, Computation Center, Carnegie Institute of Technology, 1960,
4 (KIRKLEYl) Charles R. Kirkley and Johns F. Rulifson, "The LOT
System of Syntax Directed Compiling," Stanford Research Institute
Internal Report ISR 187531-~139, 1966.

5 (LEDLEYl) Robert Ledley and J.B. Wilson, "Automatic Programming

3

Language Translation through Syntactical Analysis," Communications

of the Association for Computing Machinery, Vol., 5, No. 3 pp. 145-55,

March, 1962.
6 (METCALFEl) Howard Metcalfe, "A Parameterized Compiler Based

1

on Mechanical Lhguistics," Planning Research Corporation R-311,

March 1, 1963, also in Annual Review in Automatic Programming,

Vol. 4, 125-65.
7 (NAURL) Peter Naur et al., "Report on the Algorithmic Language

ALGOL 60," Communications of the Association for Computing Machinery,

Vol. 3, No. 5, pp. 299-384, May, 1960.

8 (OPPENHEIM1) D. Oppenheim and D. Haggerty, "META 5: A Tool

to"Manipulate Strings of Data," Proceedings of the 21st National

‘Conference of the Association for Computing Machinery, 1966,

‘9 (RUTMAN1) Roger Rutman, "LOGIK, A Syntax Directed Compiler for‘
Computer Bit-Time Simulation," Master Thesis, UCLA, August, 19%64.

10 (SCHMIDT1) L.0O. Schmidt, "The Status Bit," Special Interest

Group on Programming Languages Working Group 1 News Letter, 1964.

11 (SCHMIDT1) PDP-1
12 (SCHMIDT3) EQGEN
13 (SCHNEIDERL) F.W. Schneider and G.D. Johnspn, "A Syntax-Directed

Compiler-Writing Compiler to Generate Efficient Code," Proceedings

-of the 19th National Conference of the Association for Computing

Machinery, 1964.
14 (SCHORREL) D.V. Schorre,. "A Syntax-Directed SMALGOL for the

1401," Proceedings of the 18th National Conference of the Association

for Computing Machinery, Denver Colorado, 1963.

15 (SCHORRE2) D.V. Schorre, "META IIL, A Syntax-Directed Compiler

&

Writing Language," Proceedings of the 19th National Conference of

the Association for Computing Machinery, 1964.

16 Rosen, Saul (ed.), Programming Systems and Languages, McGraw-

Hill Beook Company, 1967.
17 Feldman, J. and Gries, D., "Translator Writing Systems," Communi-

cations of the ACM, February, 19638,

Unclassified -
Security Classification

g iy

é).u.un“ai?x’l'”. COMTACL DATA-RA&D

(Sccurity classification of titlo, body of abstract and indexing senuistion must be entered when the overall report is classified)
1. ORIGINATING ACTIVITY (Cofporute uuthar) Iz, REPORT SECURITY CLALLIFICATION
Computer Science Unclassified
University of Utah 26 GRouR
Salt Lake City, Utah 84112

3. REFORT TITLE

THE TREE-META COMPILER-COMPILER SYSTEM: A Meta Compiler
System for the Univac 1108 and the General Electric 645

4. DESCRIPTIVE NOTES (Type of roport and inclusive dales)

technical report

5. AUTHORI(S) (First name, middie initial, last nomas)

C. Stephen Carr, David A, Luther, Sherian Erdmann

8. REPORT DATE 78 TOTAL NO. OF PAGES %75. NO. OF REFS
March 1969 51 i 15
88. CONTRACT OR GRANT NO. . 84, ORIGINATOR'S REPORT NUMBER(S)
AF 30(602)-4277 .
b, PROJECT &(g) TR 4—'1'2
ARPA Order No. 829 .
- Program COde NuInber : 6D3 O ob, Sh;t‘erELEoftlj.poRT NOIS) (Any othet humbets that may be assigned
d. RADC-TR-69-83

10. DISTRIBUTION STATEMENT

Thiswﬁgcumen‘ is subjec;,~ special export controls and each
4 f to£Oreign govéfnmen ox foh@mg< aLlQﬁ@? ERAD e only

#r apprewal of RADC, New York: #
11 SUPPLEMENTARY NOTES 112 SPONSORING MILITARY ACTIVITY
Monitored by Rome Air Developmeni Advanced Research Projects
Center (EMIIO), Criffiss Air ! Agency, Washington, D.C. 20301

13. ABS5TRACT

Force, New York 13440 ?

Trece Meta is a compiler-compiler system for context-free
languages. Parsing statements of the metalanguage resemble
] Backus-Naur Form with embedded tree-building directives.
Unparsing rules include extensive tree-scanning and code-—
generation constructs. Examples in this report are drawn
from algebraic and special-purpecse languages. The process
of bootstrapping from a simpler metalanguage is explored
in detail.

This report is based on an earlier one by D. I. Andrews
and J. F. Rulifson of Stanford Research Institute which
described the SDS 940 version of Tree Meta. . The Tree Meta
system described in this report was bootstrapped from the
SDS 940 with a minimum of hand coding.

P%~r@ FORM
w 1N0vnuﬂ‘f‘: jd Unclassified
Security Classification

Unclassified

Security Classification

14, KEY WORDS LINK A LINK B LMK
ROLE wWT ROLE wT HOWE wT
Metalanguage
compiler—-compiler
‘parsing
unparsing
‘code generation
tree building
Unclassified

Security Classification

