
THE TREE-META COMPILER-COMPILER SYSTEM:

A Meta Compiler System for the Univac 1108

and the General Electric 645

C. Stephen Carr
David A. Luther
Sherian Erdmann

University of Utah

This research was supported by the
Advanced Research Projects Agency
of the Department of Defense and
was monitored by David A. Luther,
RADC, GAFB, N.Y. 13440 under
Contract No. AF30(602)-4277.

FOREWARD

This interin-t report describes research accomplished
by Computer Science of the university of Utah, Salt Lake
City, Utah, for the AdvanCed Research Projects Agency,
administered by Rome Air Development Center, Griffiss
Air Force Base, New York under Contract No. AF30(602)-4277.
Secondary report number is TR 4-12. Mr. David A. Luther
(EMIIO) is the RADC Project Engineer.

This technical report has been reviewed and is
approved.

Approved: DAVID A. LUTHER
Project Engineer

TREE META

ABSTRACT

Tree Meta is a compiler-compiler system for context­

free languages. Parsing statements of the metalanguage

resemble Backus-Naur Form with embedded tree-building

directives. Unparsing rules include extensive tree­

scanning and code-generation constructs. Examples in

this report are drawn from algebraic and special-purpose

languages. The process of bootstrapping from a simpler

metalanguage is explored in detail.

This report is based on an earlier one by D.I. ~

Andrews and J.F. Rulifson of Stanford Research Institute

which described the SDS 940 version of Tree Meta. The

Tree Meta system described in this report was bootstrapped

from the 8DS 940 with a minimum of hand coding.

1.

TABLE OF CONTENTS

Introduction • . • .
1. Some Definitions.•.....
2. Design Standards and Scope.
3. Compiler Writing Schemes.....
4. Top-Down Parsing......•••
5. Tree Meta Input Language .•

.100
· .100
· .101
• .102

· • .103
· .105

2.

3.

Basic Syntax .
1. Syntax Rules· .••...•.
2. Parse Trees· •
3. Unparse Rules·

3a. Output.
3b. Node Testing. • ••
3c. Out-Expressions· ...

4. Additional Features•

Formal Description . . • .
1. Programs and Rules·
2. Expressions ..•.
3. Elements of Parse Rules.
4. Unparse Rules . • . . .
5. Unparse Expressions ..
6. Output .

• •• 0 •• •• 200
· .200
· .203

.207
• . • . . .207

• • .209
. • • . . .213

. . •216

• .300
. . • • .300

• .302
• .303

• • .307
• • .309
· •. 313

4. Program Environment ..
1. Input Machinery
2. Stacks and Internal
3. Output Facilities.

Organizations .

.400
. . • .400
• . • .403

· .407

5. A Detailed Example
1. Compiler Specifications
2. The Generated Compiler..
3. Example Language Statements.

BIBLIOGRAPHY

• • .500
· .500

· . .503
• • .528

APPENDICES
Appendix A:
Appendix B:
Appendix C:
Appendix D:

Utah Tree-Meta Control Cards
RADC Tree-Meta Control Cards
Error Codes
Tree-Meta Specifications

TREE META

INTRODUCTION

1. Some Definitions

Terms such as "metalanguage" and "metacompiler" have a

variety of meanings. In this report "Language," without the

prefix "meta," means any formal computer language. These are

generally languages like ALGOL or FORTRAN. Any metalanguage

is also a language.

A compiler is a computer program which reads a

formal-language program as input and translates that

program into instructions which may be executed by a

computer. The term "compiler" also means a listing of

the instructions of the compiler.

A language which can be used to describe other languages

is a metalanguage. English is an informal, general meta­

language. Backus-Naur Form or BNF (NAURl) is a formal

metalanguage used to define ,ALGOL. BNF is weak, for it

described only the syntax of ALGOL, and says nothing

about the semantics or meaning. English, on the other

hand, is powerful, yet its informality prohibits its

translation into computer programs.

A metacompiler, in the most general sense of the term,

is a program which reads a metalanguage program as input

and translates that program into a set of instructions.

If the input program is a complete description of a formal

language, the translation lS a compiler for the language.

100

Syntax and
Semantics
Rules for
Language X

)

[Tree ",eta] -
Compiler for
Language X
expressed in
Fortran

2. Design Standards and Scope

The broad meaning of the word "metacompiler," the strong,

divergent views of many people In the field, and our restricted

use of the word, necessitate a formal statement of the design

standard and scope of Tree Meta.

Tree Meta is built to deal with a specific set of

languages; namely, those which are strictly context free

in the formal sense. There is no attempt to design

universal languages, or machine independent languages,

or any other goals of many compiler-compiler systems.

Compiler-compiler systems may be rated on two almost

independent features: the syntax they can handle and the

features within the system which ease the compiler-

building process.

Tree Meta parses context-free languages in a top

down fashion using limited backup. Some context

sensitive constructs can also be handled; i.e., flags

and values and block structure in symbol tables.

There is'little interest, however, in dealing with such

problems as the FORTRAN "continue" statement, the PL/l

"enough ends to match," or the ALGOL "is it procedure

or is it a variable" question. Tree Meta is only one

part of a system-building technique. There is flexibility

101

at all levels of the system, and the design philosophy

has been to reap maximum payoff rather than fight

old problems.

Many of the features considered necessary for a

compiler-compiler system are absent in Tree Meta. There

are no features for handling multi-dimensional

subscripts or higher-level macros. These features

are not present because the users have not needed them.

None, however, would be difficult to add.

3. Compiler Writing Schemes

There are two classes of formal-definition compiler-writing

schemes.

In terms of usage, the productive or synthetic approach

to language definition is the most common. A productive

grammar consists primarily of a set of rules which describes

a method of generating all the possible strings of the

language.

The reductive or analytic technique states a set of

rules which describe a method of analyzing any string of

characters and deciding whether that string is in the

language. This approach simultaneously produces a structure

for the input string so that code may be generated.

The metacompilers are a combination in both schemes.

They are neither purely productive nor purely reductive,

but merge both techniques into a single system. These

compilers are expressible in their own language, hence the

prefix "meta."

102

4. Top-Down Parsing

The following is a formal discussion of top-down p~rsing

algorithms. It relies heavily on definitions and formalisms

which are standard in the literature and may be skipped by

the lay reader. For a language L, with vocabulary V, non­

terminal vQcabulary N, productions P, and head S, the top-down

parse of a string u in L starts with 8 andboks for a sequence

of productions such that 8 => u (8 produces u).

Let V = {E, T, F, +, * 9,) , X},

N = {E, T, F}

P {E .. - T / T + F

T : := F / F * T

F : := X / E) }

L = (V, N, P , E)

The following intentionally incomplete ALGOL procedures

will perform a top-down analysis of strings in L.

a. boolean procedure E; E:= if T then (if

is symbol ('+') then E else true) else false; comment

is symbol (arg) is a boolean procedure which compares

the next symbol in the input string with its argument,

argo If there is a match, the input stream is advanced;

b. boolean procedure T; T := if F then (if is symbol

('*') then T else true) else false;

c. boolean procedure F; F := if is symbol ('X')

then true else if is symbol (' (') then (if E then (if

is symbol (') I) then true else false) else false)

else false;

103

Practical recognizers, as opposed to abstract systems,

such as BNF, can get into infinite loops in a manner

know as left recursion. The left-recursion problem can

readily be seen by a slight modification of L. Change

the first production to

E : :=T/E + T

and the procedure for E in the corresponding way to

E : = if T then true else if E .

Parsing the string "X+X", the procedure E will call T,

which calls F, which tests for "X" and gives the result

"true." E lS then true but only the first element of

the string is in the analysis, and the parse stops before

completion. If the input string is not a member of the

language, T is false and the alternative E is called, which,

of course, calls T again, and E loops infinitely.

The solution to the problem in Tree Meta is the

repetition operator.

could be

E = T$("+" T)

In Tree Meta, the first production

where the dollar sign-parentheses indicate that the

quantity inside the parentheses can be repeated any

number of times, including zero times.

Tree Meta makes no check to ensure that the compiler

it is producing lacks syntax rules containing left recursion.

The use of left recursion is one of the more common

mistakes made by inexperienced metalanguage programmers.

104

5. Tree Meta Input Language

The input Inaguage to the metacompiler closely resembles BNF.

The primary difference between a BNF rule

<go to> :: = go to <label>

and a metalanguage rule

GOTO = "GO" "TO" . ID:

is that the metalanguage has been designed to use a ~omputer­

oriented chara~ter set and predefined basic entities. The

REPETITION (arbitrary-number) operator and parenthesis

construct of the metalanguage are lacking in BNF. For example,

TERM = FACTOR $ (("*" / "/" / "t") FACTOR);

is a metalanguage rule that would replace 3 BNF rules.

The ability of the compilers to be expressed in their own

language has resulted in the proliferation of metacompiler

systems. Each one is easily bootstrapped from a more primitive

versio~, and complex compilers are built with little programming

or debugging effort.

105

BASIC SYNTAX

CHAPTER 2

1. Syntax Rules

A metaprogram is a set of metalanguage rules. Each rule

has the form of a BNF rule, with output instructions embedded

in the syntactic description.

The Tree Meta compiler converts each of the rules to

a set of Fortran statements.

As the rules (acting as instructions) compile a

program, they read an input stream of characters one

character at a time. Each new character is subjected to

a series of tests until an appropriate syntactic description

is found for that character. The next character is then

read and the rule testing moves forward through the input.

The following four rules illustrate the basic constructs

in the system. They will be referred' to later by the

reference numbers RIA through R4A.

RIA EXP = TERM ("+" EXP / "_" EXP / .EMPTY) i

R2A TERM = FACTOR $("*" FACTOR / "/" FACTOR) i

R3A FACTOR = "_" FACTOR / PRIMi

R4A PRIM = . ID / . NUM/ II (" EXP ") II i

The identifier to the left of the initial equal

sign names the rule. This name is used to refer to the

rule from other rules. The name of rule RIA is EXP.

The right part of the rule--everything between the

initial equal sign and the trailing semicolon--is the

part of the rule which effects the scanning of the input.

200

Five basic types of entities may occur in a right part.

Each of the entities represents some sort of a test which

results in setting a general flag to either "true" or

"false. "

a. A string of characters between quotation

marks (") represents a literal string. These literal

strings are tested against the input stream as characters

are read.

b. Rule names may also occur in a right part.

If a rule is processing input and a name is reached,

the named rule is invok~d. R3A defines a FACTOR as

being either a minus sign followed by a ~ACTOR, or

just a PRIM.

c. The right part of the rule FACTOR has just been

defined as "a string of elements," or "another string

of elements." The "or's" are indicated by slash

marks (/) and each individual string is called an

alternative. Thus, in the above example, the minus

sign and the rule name FACTOR are two elements in R3A.

These two elements make up an alternative of the rule.

d. The Dollar sign is the repetition operator in

the metalanguage. A $ must be followed by an STEST

element, and it indicates that this element may occur

an arbitrary number of times (including zero). Paren­

theses can be used to group a set of elements into

a single STEST element to be repeated. This is

shown in rules RIA and R2A above.

e. In Tree Meta, three basic recog~izers are

"identifier" as .ID, "number" as .NUM, and "string"

201

as .SR. Other basic recognizers are described in

Section ~ on page 217., Another basic entity which is

treated as a recognizer, but does not look for anything,

is .EMPTY. It always returns a value of "true." Two

basic entities may be seen in rule R4A. A basic

recognizer is a program in Tree Meta that may be

called upon to test the input stream for an occurrence

of a particular entity; i.e., .ID checks for any

combinations of letters and digits starting with a

letter; .NUM ~hecks for any combination of digits;

and .SR checks for any combinations of letters

enclosed in double quotes.

As an example, suppose that the input stream

contains the string X*Y when the rule EXP is invoked

during a compilation. EXP first calls rule TERM,

which calls FACTOR, which tests for a minus sign.

This test fails and FACTOR then tests for a plus

sign and fails again. Finally, FACTOR calls PRIM,

which tests for an identifier. The character X is

an identifier; it is recognized and the input stream

advances one character.

PRIM returns a value of "true" to FACTOR, which

in turn returnsto TERM. TERM tests for an asterisk

and fails. It then tests for a slash and fails. The

dollar sign in front of the parenthesized group of

TERM, however, means that the rule has succeeded

because TERM has found a FACTOR followed by zero

occurrences of "* FACTOR" or "/ FACTOR." Thus,

202

TERM returns a "true" value to EXP. EXP now tests for

plus sign and finds it. The input stream advances

another character.

EXP now calls on itself. All necessary information

is saved so that the return may be made to the right

place. In calling on itself, it goes through the

sequence just described until it recognizes the Y.

Thinking of the rules in this way is confusing

and tedious. It is best to think of each rule

separately. For example, one should think of R2A as

defining a TERM to be a series of FACTORS separated

by asterisks and slashes and not attempt to think

of all the possible things a FACTOR could be.

2. Parse Trees

Tree Meta builds a parse tree of the input stream before

producing any output. Before we describe the syntax of node

generation, let us first discuss pars~ trees.

A parse tree is a structural description of the input

stream in terms of the given grammar.

Using the four rules above, the input stream

X+Y*Z

has the following parse tree:

203

EXP

FACTOR

PRIM

"y" "Z"

In this tree, each node is either the name of a rule or

- one of the primary'entities recognized by the basic recognizer

routines.

Also, there is a great deal of subcategorization. For

example, Y is a PRIM which is a FACTOR which is the left

number of a TERM. This degree of subcategorization is

generally undesirable.

The tree produced by the metacompiler program is simpler

than the one above, yet it contains sufficient information

to complete the compilation.

The parse tree actually produced is:

ADD

x

Z

In this tree, the nodes are the names of output rules

which generate code.

204

The parse rules which produce the above tree are the

same as the four previous rules with new syntax additions

to perform the appropriate node generation. A colon

followed by an output rule name is used in a parse rule to

build a tree node. The complete rules are:

RIB EXP = TERM ("+" EXP :ADD{;;~ }/"-" EXP :SUB{2}/ .EMPTY);

R2B TERM = FACTOR $("*" FACTOR :MULT{2}/ "/" FACTOR :DIVD{2});

R3B FACTOR = "_" FACTOR :MINUS{I} / PRIM;

R4B PRIM = .ID / .NUM / "(" EXP ")";

As these parse rules scan an inputstteam~ they perform just

like the fitst set. As the entities are r~cognized~'however,

they are stored on a push-down stack until the node-generation

element of the parse rule removes them to make trees. As an

example, cbnsider how the input stream x+y*z is analyzed.

EXP calls TERM, which calls FACTOR, which calls PRIM,

which recognizes the X. The input stream moves forward

and the X is put on a stack.

PRIM returns to FACTOR, which returns to TERM, which

returns to EXP. The plus sign is recognized and EXP is

again called. This is an example of a recursive call.

Again EXP calls TERM, which calls FACTOR, which calls

PRIM, which recognizes the Y. The input stream is

advanced, and Y is put on the push-down stack. The stack

now contains Y,X, and the next character on the input

stream is the asterisk.

PRIM returns to FACTOR, which returns to TERM. The

asterisk is recognized, and the input is advanced another

cha'~ac;{~r.

205

The rule TERM now calls FACTOR again, which calls PRIM,

which recognizes the Z, advances the input stream, and

puts the Z on the push-down stack. PRIM returns to

FACTOR. FACTOR returns to its second call from TERM.

The construct :MULT is now processed. This names the

next node to be put in the tree. Later we will see that,

in a complete metacompiler program, there will be a rule

named MULT which will be processed when the time comes to

produce code from the tree. Next, the {2} in the rule

TERM is processed. This tells the system to construct a

portion of a tree. The branch is to have two nodes, and

they are to be the last two entities recognized (they are on

the stack). The name of the branch is to be MULT, since

that was the last name given. The branch is constructed and

the top two items of the stack are replaced by the new

node of the tree.

The stack now contains:

MULT

x

The parse tree is now

y

MULT

/~
Z

Notice that the nodes are assembled in a left-to-

right order, and that the original order of recognition

is retained.

Rule TERM now returns to EXP, and EXP returns to the

previous call on itself. The next node is named by executing

'206

the ~ADD, i.e., names the next node for the tree. The{2}

in rule EXP is now executed. A branch of the tree is

generated which contains the top two items of the stack

and whose name is ADD. The top two items of the stack

are removed, leaving it as it was initially, empty. The

tree is now complete, as first shown, and all the input

has been passed over.

3. Unparse Rules

Now a second set of rules, the unparse rules, are applied

to the tree to generate code. The unparsing rules have two

functiohs~ they produce output and they test the tree in

much the same way as the parsing rules test the input stream.

This testing of the tree allows the output to be based on the

deep structure of the input, and, hence, better output may be

produced.

3a. Output

Before we discuss the node-testing features, let us first

describe the various types of output that may be produced.

The following list of output-generation features in the meta­

compiler system is enough for most examples.

1. The output is line-oriented, and the end of a line

is determined by a carriage return. To instruct the system

to produce a carriage return, one writes a backslash as an

element of an unparse rUle.

2. To put a tab character into the output stream,

one writes a comma as an element of an output rule.

207

3. A literal string can be inserted in the output stream

by enclosing the literal string in quotes in the unparse

...
rule. Notice that, in the unparse rule, a literal string

becomes output; while, in the parse rules, it becomes an

entity to be tested for in the input stream. To output

a Fortran continuation statement which has 100 as a label,

one would write the following string of elements

in an unparse rule:

"100", "CONTINUE" ""

4. As can be seen in the last example of a tree, a

node of the tree may be either the name of an unparse rule,

such as ADD, or one of the basic entities recognized during

the parse, such as the identifier X.

5. Suppose that the expression X+Y*Z has been parsed

and the program is in the ADD unparse rule processing the

ADD node (later we will see how this state is reached).

To put the identifier X into the output stream, one writes

"*1" (meaning "the first node below") as an element. For

example, to generate an output line with fixed and variable

parts, one would write:

, "CALL (" * 1 ") " "

6. To generate the code for the left-hand node of the

tree one merely mentions "*1" as an element of the unparse

rule. Caution must be taken to ensure that no attempt is

made to append a nonterminal node to the output stream;

each node must be tested to be sure that it is the right

type before it can be evaluated or output.

208

Generated labels are handled automatically. A label is

referred to by a number sign followed by a number. Every

time a label is mentioned during the execution of a rule, a

label is generated, and then appended to the output stream.

If one output rule calls another output rule, all the labels

are saved, and new ones generated. When a return is made, the

previous labels are restored.

As trees are being built during the parse phase,

a time comes when it is necessary to generate code from

the tree. To do this, one writes an asterisk as an element

of a parse rule; for example,

R5B PROGRAM = ".PROGRAM" $(ST *) ".END";

which generates code for each statement (ST) after it has

been entirely parsed. When the asterisk is executed,

control of the program is transferred to the rule whose

name is the foot (top node or last generated node) of the

tree. When return if finally made to the rule which

initiated the output, the entire tree is cleared and the

generation process begins anew.

3b. Node Testing

Structurally, an unparse rule is a rule name followed by

a series of output rules. The diagram of an unparse rule may

be referenced while reading the following section.

t TEST I TESTI
OUT- OUT- ~ OUT-
EXPRS EXPRS TEST EXPRS

OUTPUT RULE
T RULE or OUTRULE or OUTRULEOUTPU

MDX {-,.ID} => IT{*l} 'A / *2 'B {-} => *l:S;

_T~~~J
209

Each output rule begins with a test of nodes. The series of

output rules make up a set of highest-level alternatives. When

an unparse rule is called, the test for the first output rule

is made. If it is satisfied, the remainder of the alternative

is executed; if it is false, the next alternative output rule

test is made. This process continues until either a successful

test is made or all the alternatives have been tried. If a

test is successful, the alternative is executed and a return

is made from the unparse rule with the general flag set "true."

If no test is successful, a return is made with the general

flag "false."

Suppose a translator is to be constructed for a language

with arbitrary expressions as subscripts. For example:

X(I*J - 3)
YZ(3 * K / J)

The target language (Fortran, for example) usually does not

allow this. Fortran subscripts are normally a simple integer

variable or constant optionally followed by a signed constant.

For example:

x (I)
YZ (J + 3)

By building a tree before generating any output code, it

is possible to detect special cases and take appropriate action.

Suppose, during the parse phase, the following tree is built.

SUbscripted variable

"J"

210

"3"

An unparse rule with four alternatives could be used to detect

special cases.

SV{-, ADD {.ID, .NUM}} => (special case) /

{- , SUB {.ID, .NUM}} => (special case) /

{-, .ID} => (special case) /

{-, -} => (general case)

The simplest test that can be made is the test to ensure

that the correct number of nodes emanate from the node being

processed. The ADD rule may begin

ADD{-,-} =>

The string within the brackets 1S known as an out-test. The

hyphens are individual items of the out-test. Each item 1S a

test for a node. All that the hyphen requires is that a node

be present. The name of a rule need not match the name of the

node being processed.

1. If one wishes to eliminate the test at the head

of the out-rule, one may write a slash instead of the

bracketed string of items. The slash, then, takes the

place of the test and is always true. Thus, a rule which

begins with a slash immediately after the rule name may

have only one out-rule. The rule

MT / => .EMPTY;

is frequently used to flag the absence of an optional

item in a list of items. It may be tested in other

unparse rules, but it itself always sets the general flag

true and returns.

2. The nodes emanating from the node being evaluated

are referred to as *1, *2, etc., counting from left to right.

211

To test for equality between nodes, one merely writes

*i for some i as the desired item in an out-test. For

example, to see if node 2 is the same as node 1, one could

write either {-,*l} or {*2,-}. To see if the third node

is the same as the first, one could write {-,*2,*1}. In

this case, the *2 could be replaced by a hyphen.

3. One may test to see if a node is an element which

was generated by one of the basic recognizers py mentioning

the name of the recognizer. Thus to see if the node is

an identifier one writes.ID; to test for a number one writes

.NUM. To test whether the first node emanating from the

ADD is an identifier and if the second node exists, one

writes {.ID,-}.

4. To check for a literal string on a node, one may

write a string as an item in an out-test. The construct

{-,"l"} tests to be sure that there are two nodes and that

the second node is a 1. The second node will have been

recognized by the .NUM basic recognizer during the parse

phase.

5. A generated label may be inserted into the tree

by using it in a call to an unparse rule in another

unparse rule. This process will be explained later. To see

if a node is a previously generated label, one writes a

number sign followed by a number. If the node is not a

generated label the test fails. If it is a generated

label, the test is successful and the label is associated

with the number following the number sign. To refer to the

label in the unparse r~le, one writes the number sign followed

by the number.

212

6. Finally, one may test to see if the name matches

a specified name. Suppose that one had generated a node

named STORE. The left node emanating from it is the name

of the variable and on the right is the tree for an expression.

An unparse rule may begin as follows:

STORE{-,ADD{*l,"l"}} ='> "MIN " *1,

The *1 as an item of the ADD refers to the left node of

the STORE. Only a tree such as

STORE

~
.ID A

.ID 1

would satisfy the test, where the two identifiers must be

the same or the test fails. An expression such as X ~ X + 1

meets all the requirements.

3c. Out-Expressions

Each out-rule, or highest-level alternative, in an unparse

rule is also made up of alternatives. These alternatives

are spearated by slashes, as are the alternatives in the parse

rules.

The alternatives of the out-rule are called "out-exprs."

The out-expr may begin with a test, or it may begin with

instructions to output characters. If it begins with a test,

the test if made. If it fails, the next out-expr in the out-rule

is tried. If the test is successful, control proceeds to the

next element of the out-expr. When the out-expr is done, a

a return is made from the unparse rule.

213

The test in an out-expr resembles the test for the out-rule.

There are two types of these tests.

1. Any non-terminal node in the tree may be transferred

to by its position in the tree rather than its name. For

example, *2 would invoke the second node from the right.

This operation not only transfers control to the specific

node, but it makes that node the one from which the next

set of nodes tested emanate. After control is returned

to the position immediately following the *2, the general

flag is tested. If it is "true" the out-expr proceeds to

the next element. If it is "false" and the *2 is the

first element of the out-expr the next alternative of the

out-expr is tried. If the flag is "false" and the *2

is not the first element of the out-expr, a compiler error

is indicated and the system stops.

2. The other type of test is made by invoking another

unparse rule by name and testing the flag on the completion

of the rule. To call another unparse rule from an out­

expr, one writes the name of the rule followed by an

argument list enclosed in brackets. The argument list is

a list of nodes in the tree. Copies of these nodes are

put on the node stack, and when the call is made, the rule

being called sees the argument list as its set of nodes to

analyze. For example:

214

ADD{MINUS{-},-} => SUB{*2,*1:*1}

=>

This tree building feature maintains the substructure of

the nodes being transferred, such as the structure ben~ath

A and B.

Only nodes and generated labels can be written as

arguments. Nodes are written as *1, *2, etc. To

reach other nodes of the tree, one may write such things

as *1:*2, which means "the second node emanating from

the first node emanating from the node being evaluated."

Referring to the tree for the expression X+Y*Z on

page 203, if ADD is being evaluated, *2: *1 is Y. To

go up the tree, one may write an "uparrow" (t) followed

by a number before the asterisk-number-colon sequence.

The uparrow means to go up that many levels before the

search is made down the tree. If MINUS were being

evaluated, tl*2 would be the B.

If a generated label is written as an argument,

it is generated at that time and passed to the called

unparse rule so that that rule may use it or pass it

on to other rules. The generated label is written

just as it is in an output element; i.e., a number

sign followed by a number.

215

The calls on other unparse rules may occur anywhere

in an output expression (out-expr). If they occur in

a place other than the first element, they are executed

in the same way, except that after the return, the

flag is tested; if it is false a compiler error is

indicated. This use of extra rules helps in making the

output rules more concise.

The rest of an out-expr is made up of output

elements appended to the output stream, as discussed

above.

Sometimes, it is necessary to set the general flag in

an out-expr, just as it is sometimes necessary in the parse

rules. .EMPTY may be used as an element in an out-expr

at any place.

Out-exprs may be nested, using parentheses, in the sam~

way as the alternatives of the parse rules.

4. Additional Features

Some additional features of Tree Meta make programming easier

for the user.

If a literal string is but one character, one may write

an apostrophe followed by the character rather than writing

a quotation mark, the character, and another quotation mark.

For example: 's and "s" are interchangeable in either a

parse rule or an unparse rule.

As the parse rules proceed through the input stream,

they may come to a point where they are in the middle of

216

a parse alternative and there is a failure. This may

happen for two reasons: backup is necessary to parse the

input, or there is a syntax error in the input. Backup

will not be covered in this introductory chapter. If the

syntax error occurs, the system prints out the line in

error with an arrow pointing to the character which cannot

be parsed. The system then stops. To eliminate this, one

may provide for an error message by writing a "?" followed

by a rule name. The error construct may appear after any

test except the first in the parse equations. For example,

ST = .ID'= $2 EQERR EXP ?3 EXERR'i ?4 SYNERR : STORE{2}i

Suppose this rule is executing and has called rule EXP, and

EXP returns with the flag false. Instead of stopping,

Tree Meta prints the line in error with an arrow pointing

to the offending character and an error comment which

contains the number 3. The compiler then transfers control

to the parse rule EXERR.

Comments may be inserted anywhere in a metalanguage

program where blanks may occur. A comment begins and ends

with a "%" and may contain any character except, of course,

a flSl- II
o • ,

In addition to the basic recognizers .ID, .NUM, and

.SR, three others are occasionally very useful.

The symbol .LET tests for the occurrence of a

single letter, and the symbol .DIG tests for the

occurrence of a single number. Also, .CRR tests for

the occurrence of any single character (letter, digit,

or special character).

217

The recognizers .CHR, .LET, and .DIG, if successful,

store away a character in a special way; hence, references

to it are not exactly the same as for other basic recognizers.

In all three cases, the octal representation of the

characters is put directly in KSTACK. In node testing,

if one wishes to check for the particular occurrence of a

character that was recognized by .CHR, .LET, or .DIG, one

uses the single quote - character construct. If one wishes

to test what rule recognized a character, use .CHR, .LET,

or .DIG. When outputting a node which is a character,

letter, or digit, one adds :C to the node indicator. For

example, *l:C outputs all characters, whether recognized by

.CHR, .LET, or .DIG.

When a compilation is very simple, it may be cumbersome

to build a parse tree and then output from it; hence, the

ability to output directly from parse rules is available.

The syntax for direct output from parse ruleq is

generally the same as for unparse rules. The output

expression is written within square brackets. (See

formal description, p~ 312.) The items from the

input stream which normally are put in the parse tree may

be copied to the output stream by referencing them in the

output expression. The most recent item recognized is

referenced as * or *SO. Items recognized previous to

that are *Sl, *S2, etc., counting in reverse order--

that is, counting down from the top of the ~STACK in

which they are kept. Other characteristics of the items

such as length, number, character may be put in the

218

,.

output stream as in unparse rules by L, N, C, respectively;

i.e., ~SlL will output the length of the item Sl.

Normally, the items are removed from the stack and

put into the tree; however, if they are just copied

directly to the output stream, they remain in the KSTACK.

They are removed by writing an "&" at the end of the parse

rule (just before the ;). This causes all input items

added to the ~STACK by that rule to be removed. The

input stack is, thus, the same as it was when the rule

was called.

In addition to the previous means of outputting code,

another exists which permits output in a more immediate

sense into the body of code which is the generated

compiler. Remember that the basic function of Tree Meta is

to output a body of code (symbolic Fortran statements) which

acts as a compiler for some user-defined language.

SPECIFICATIONS
FOR USER-DEFINED +

LANGUAGE

TREE META

COMPILER

FORTRAN PROGRAM ­
+ A COMPILER FOR

USER'S LANGUAGE

As a specific example of this process, consider the parse

construct "CONTINUE" which generates for the user's

compiler: CALL TST(8, 8HCONTINUE).

The same construct in an UDparse~ule generates the

Fortran output: CALL LIT(8, 8HCONTINUE).

Both Fortran statements are executed when the generated

compiler is running. The LIT subroutine, for example,

outputs the eight characters CONTINUE in the output stream.

"CONTINUE" --
+ rR~~_~~ETA I -CALL LIT (8, 8HCONTINUE) +

219

1~~NERATEDr
MPTLER

4­
CONTINUE

Sometimes, the Tree-Meta user wants to output code immediate­

ly from Tree Meta having the result executed in the generated

compiler instead of being executed as code that the generated

compiler has output. Thus, for example"

! (, "REWIND" /)

causes a Fortran rewind statement to be inserted directly in­

to the generated compiler. This statement would be executed

"immediately" as the generated compiler is being executed in­

stead of being "deferred" for execution one step later in the

program the generated compiler generates.

220

FORMAL DESCRIPTION

CHAPTER 3

This chapter is a formal description of the complete Tree Meta

language. It is designed as a reference guide, not as a training

manual.

1. Programs and Rules

Syntax

program = (" .META" . ID size/" . CONTINUE " . ID)

(".LIST"/.EMPTY) $(rule)".END";

size = '(siz $(', siz) / .EMPTY;

siz = .CHR '= .NUM ;

rule = .ID ('= exp('&/ . EMPTY) / '/"= "genl/

outrul)

Semantics

, .,

A file of symbolic Tree Meta code may be either an

original main file or a continuation file. A compiler

may be composed of any number of files, but there may

be only one main file.

The mandatory identifier fillowing the string .META

in a main file names the rule at which the parse will be-

gin, and is also the name of the Fortran symbblic element

produced.

The optional .LIST refers to a listing of

(1) code - output code from TREE META

(the generated compiler)

(2) source - the input to TREE META (compiler

300

specifications)

The options are:

.LIST OFF :no listing

.LIST :list both source and code

.LIST SOURCE :list source, no code

.LIST CODE :list code, no source

I~ not specified, TREE META lists code and source. The list

option can be used anyplace an NTEST is used.

The size construct sets the allocation parameters

for the three stacks and string storage for use by the

generated compiler. The default sizes are those used

by the Tree Meta compiler. M,K,N, and S are the only

valid characters; the size is something which must be

determined by experience. The maximum number of cells

used during each compilation is printed out at the end

of the compilation.

When a file begins with . CONTINUE, no initialization or stor­

age-allocation code is produced.

There are three different kinds of rules in a Tree Meta pro-

gr?-m. All three begin with the identifier which names the ruleo

1. Parse rules are distinguished by the = following the i­

dentifiero If all the elements which generate possible nodes

during the execution of a parse rule are not built into the

tree, they must be popped from the kstack by writing an amp­

ers and immediately before -the semicolon.

2. Rules with the string /= following the identifier may

be composed only of elements which produce output. There is

301

no testing of flags within a rule of this type.

3. Unparse rules have a left bracket following the identi­

fier. This signals the start of a series of node tests.

2. Expressions

Syntax

exp = '

suback

subexp

noback

suback ('I exp I EMPTY) I subexp (II exp I EMPTY);

= ntest (suback I .EMPTY) I stest (suback I .EMPTY)

= (ntest I stest) (noback I . EMPTY)

= (ntest I stest ('? .num (.id I I?) I .EMPTY))

(noback I.EMPTY)

Semantics

The expressions in parse rules are composed entirely of

ntest, stest, and error-recovery constructs. The four rules

above, which define the allowable alternation and concatenation

of the test, are necessary to reduce the instructions exe­

cuted when there is no backup of the input system. Tree Meta

users can control the use of back up in their generated com­

pilers on a subexpression by subexpression basis.

An expression is essentially a series of subexpressions

separated by slashes. Each sUbexpression is an alternative

of the expression. The alternatives are executed in a left­

to-right order until a successful one is found. The rest of

that alternative is then executed and the rule returns to the

rule which invoked it.

The sUbexpressions are series of tests. Only subexpres­

sions which being with a left arrow are allowed to back up

the input stream and rescan it.

302

If any STEST other than the first within the subexpression

fails, three possibilities exist. The course of action is

determined by the following syntax for the error code:

II , ? NUM (. ID / '?) II •

(1) If one question mark is present, the system prints the num­

ber following the II?" in the error code.

If the optional identifier is given eg: "? 21 RULE 1", the

system then transfers control to that rule; if another "?"

is given instead of the optional identifier eg: "?21?, the

system stops.

(2) If a backup arrow is used ("<_"), the input stream is

backed up to try another subexpression.

(3) If both error code and back-up arrow are absent, the system

prints an error comment and stops. Thus, both error codes

and back-up arrows may only be used with surexpressions of

more than one STEST. (i.e., the two rules below are not

valid) :

RULE 1

RULE 2

1* ?21E

+- STEST

If the test fails, the input stream is restored to the

position it had when the subexpression began to test the in-

put stream and the next alternative is tried. The input stream

may never be moved back more characters than are in tl1e ring buf­

fer (5000). Normally, backup is over identifiers or words and

the b~ffer is long enough.

3. Elements of Parse Rules

Syntax

ntest = I •• ID/' [(.NUM '] / genp'] /'*/ list/ " = >

303

list:::: ".LIST" ("SOURCE"I"CODE"/"OFF" I .EMPTY)

genp :::: genpl I .empty;

genpl :::: genp2 (genpl I .empty);

genp2 '* (' S. num I • empty) (' L I 'c I 'N I • empty I genu;

corom :::: ". EMPTY" I '~ (. SR I 'i tst')) ;

itst:::: (.SR/'\I' ,I' '+.CHR/"#1"1"#2"1 "#3"1 '$.ID)

itst I .EMPTY);

stest:::: I •• ID ('((INSIDEPAREN/.EMPTY)') !.EMPTY)I

.IDI

~ • SRI

, (EXP ') I

'+ stestl

(.NUM/.EMPTY) '$ (.NUM/.EMPTY) stestl

I-stestl

"

Semantics

" stest

The ntest elements of a parse rule cannot change the value

of the general flag and, therefore, need not be followed by

flag-checking code in the compiler.

The I: .ID construct (:XX) creates a new node in the

tree with the name XX. The identifier used must be the

name of an unparse rule.

example: :ADD{2}

:ADD creates a new node called ADD. {2}grabs two items off

the kstack and attaches them to the above node; as

304

for .ID~ .NUM~ .SR~ .CHR, .LET, and .DIG which check for

identifier~ number, string~ character~ letter~ and digit

respectively.

To generate a call to a subroutine other than the ones

above, the I •• ID must be followed immediately by an argument

list in parentheses. The argument list may be empty (i.e .

. COL(72) and .BLANKC() would generate CALL COL (72) and CALL

BLANKC~ respectively).

An identifier by itself produced a call to the rule with the

name of the identifier via the MCALL subroutine.

A literal string merely tests the input stream for the

string. If it is found, it is discarded. The apostrophe­

character construct functions like the literal string~ except

that the test is limited to one character. ~he apostrophe

construct will examine the input stream for uhe first non­

blank character and test it with the character immediately

following the apostrophe.

A "+" before any STEST item prevents skipping leading

spaces. For example~ 'A +.CHR will pick up the next character

following the "A" in the input, even if it is a space. Notice

that + ~ will test the next character in the input stream for

a blank.

The number-$-number construct is the repetition operator

of Tree Meta. m$n preceding an stest element in a parse rule

means that there must be between m and n occurrences of the

next element coming up in the input. The default options

for m and n are zero and infinity, respectively.

306

.ID I .SRI

The hyphen ("_") construct before any STEST item tests

to see if the STEST items is not in the input stream. For

example, -'* .CRR will pick up any character except *. Any

items that are put on the kstack during the test are removed

after the test. Thus, -('* .ID) would not leave the identifier

on the kstack. The pointers are restored after the test has been

completed. The "_" test may be nested to any level: -('*-('* .ID)).

The construct " __ " before any STEST item tests to see if the

STEST item is there, without moving the input pointer. Thus,

--'* .CRR will pick up only an *

4. Unparse Rules

Syntax

outrul = '{outr (outrul I .EMPTY);

outr = items '} "=>" outexp;

items = item (', items I.EMPTY);

item = '- I .ID '{items}' I nsimpl I '

, '+ . CHRI ' # •NUM ;

Semantics

The unparse rules are similar to the parse rules in that

they test something and return a true or false value in the

general flag. The difference is that the parse rules test

the input stream, delete characters from the input stream, and

build a tree, while the unparse rules test the tree, collapse

sections of the tree, and write output.

There are two levels of alternation in the unparse rules.

The highest level is not written in the normal style of Tree

Meta as a series of expressions separated by slashes; rather,

it is written in a way intended to reflect the matching of

307

nodes and structure within the tree. Each unparse rule is a

series of these highest-level alternations. The tree~match~ng

parts of the alternations are tried in sequence until one is

found that successfully matches the tree. The rest of the

alternation is then executed. There may be further tests within

the alternation, but not complete failure as with the parse rules.

The syntax for a tree-matching pattern is a left bracket,

a series of items separated by commas, and a right bracket.

The items are matched against the branches emanating from

the current top node. The matching is done in a left-to-right

order. As soon as a match fails, the next alternation is tried.

If no alternation is successful, a false value i~ r~turned.

Each item of an unparse alternation test may be one of

seven different kinds of test.

1. A hyphen is merely a test to be sure that a node

is there. This sets up appropriate flags and points so

that the node may be referred to later in the unparse

expression if the complete match is successful.

2. The name of the node may be tested by writing qn

identifier which is the name of a rule. The identifier

must then be followed by a test on the subnodes.

3. A nonsimple construct, primarily an asterisk-number­

colon sequence, may be used to test for node equivalence.

Note that this does not test for complete substructure

equivalence, but merely to see if the node being tested has

the same name as the node specified by the construct.

308

4. The .ID, .NUM, .CRR, .LET; .DIG, or .SR checks to

see if the node is terminal and was put on the tree by an

identifier recognizer, number recognizer, etc., during the

parse phase. This test is very simple, for it merely

checks a flag in the upper part of a word.

5. If a node is a terminal node in the tree, and if

it has been recognized by one of the basic recognizers,

it may be tested against a literal string. This is done

by writing the string as an item. The literal string

does not have to be put into the tree with an .SR recognizer;

it can be any string in string storage, put in with .SR,

.NUM, or .ID.

6. If the node is terminal and was generated by t~he

.CRR, .LET, or .DIG recognizers, it may be matched aga:inst

another specific character by writing the apostrophe­

character construct as an item.

7. Finally, the node may be tested to see if it is cl

generated label. The labels may be generated in the

unparse expressions and then passed down to other unparse

rules. The test is made writing a "#"-number construct as

an item. If the node is a generated label, not only is

this match successful, but the label is made available

to the elements of the unparse expression as the number

following the "#."

5. Unparse Expressions

Syntax

outexp = subout (I/outexp / .empty);

subout = outt (rest / .empty) /resti

309

rest outt (rest I .empty) I gen (rest I .empty) i

outt = . id I {arglst r} I '(outexp ') I nsimpl (';

(8 I LIN I C) I empty) ;

arglst

arqHmt

argmnt (', arglst I .empty) I.empty,

nsimp I '# .num;

nsimpl - 't .NUM nsimp I nsimp;

nsimp = '* .num (nsimp I .empty);

genl = (out I comm) (genl I . empty) ;

gen = comm Igenu I '< I ,> ;

Semant,ics

The rest of the unparse rules follow more closely the style

of the parse rules. Each expression is a series of alternations

separated by slash marks.

Each alternation is a test followed by a series of output

instructions, calls of other unparse rules, and parenthesized

expressions. Once an unparse expression has begun executing

calls on other rules, elements may not fail; if they do a

compi~er error is indicated and the system stops.

The first element of the expression is the test. This

element is a callan another rule; which returns a true or

false value. The call is made by writing the name of the rule

followed by a series of nodes. The nodes are put together to

appear as part of the tree, and when the call is made, the unparse

rule called views the nodes specified as the current part of

the tree, and thus the part to match against and process.

Two kinds of things may be put in as nodes for the

calls. The simplest is a generated label. This is done

by writing a "#" followed by a number. Only the numbers

310

1, 2, and 3 may be used in the current system. If a label

has not yet been generated, one is made up. This label is

then put into the tree.

Any already constructed node may also be put into the

the tree in this new position. The old node is not removed-­

rather, a copy is made. The substructure of the nodes being

transferred is maintained. An asterisk-number construct

refers to nodes in the same way as the highest-level

alternation.

This process of making new structures from the already­

existing tree is a very powerful way of optimizing the

generated compiler and condensing the number of rules needed

to handle compilation.

The rest of the unparse expression is made up of output

commands, and more calls on unparse rules. As noted above,

if any except the first call of an expression fails, a compiler

error is indicated and the system stops.

The asterisk-number-colon construct is used frequently

in the Tree Meta system. It appears in the node-matching

syntax as well as in the form of an element in the unparse

expressions. When it is in an expression, it must specify

a node which exists in the tree.

If the node specified is the name of another rule, then

control is transferred to that node by the standard subroutine

linkage.

If the node is terminal, then the terminal string

associated with the node is copied onto the output stream.

311

The simplest form of the construct is an asterisk followed

by a number, in which case the node is found by counting the

appropriate number of nodes from left to right. This may be

followed by a colon-asterisk-number construct which means to

go down one level in the tree after performing the asterisk­

number choice and count over the number of nodes specified by

the number following the colon. This process may be repeated

as often as desired, and one may therefore go as deep as one

wishes. All of this specification may be preceded by an

i-number construct which means to go up in the tree, through

parent nodes, a specified number of times before starting

down.

After the search for the node has been completed, a number

of different types of output may be specified if the node is

terminal. There is a compiler error if the node is not

terminal.

:s puts out the literal string.

~L puts out the length of the string as a decimal number.

:N puts out the string-storage index pointer if the

node is a string-storage element; otherwise,

it puts out the decimal code for the node if it

is a .CHR node. The 1108 version adds 1000 to

the number before it is output.

:C puts out the character if the node was constructed

with a .CHR, .LET, or .DIG recognizer.

312

6. output

~yntax

g~nu = out 1 ' .. ID '((INSIDEPAREN 1 . EMPTY) ') 1

, #. •NUM ('~ 1 . EMPTY) ;

out = ('''I ',I .SR 1 1'+ .CHR 1 "+W" 1 "-w" 1

".w" 1 "!J.w";

Semantics

The standard primitive output features include the

following:

1. Write a carriage return with a backslash.

2. Write a tab with a comma.

3. Write a literal string by giving the literal string.

4. Write a single character using the apostrophe-character

construct.

5. Write references to temporary storage by using a

working counter. Three types of action may be performed with

the counter. +W adds one to the counter, -W subtracts one from

the counter, and .W writes the current value of the counter

onto the output stream without changing it. Finally,!J.W

writes the maximum value that the counter ever reached during

the compilation.

The .ID' ((INSIDEPAREN/.EMPTY') is used to generate a call

to a subroutine. For example, .CERR (5(X,Y)) generates a call to

the subroutine CERR with the argument 5(X,Y).

#N means "define generated label N at this point in the program

being compiled." (N may be 1,2, or 3). If a colon is written

directly after the generated label (#2:), Tree Meta writes the

313

generated label in the output stream followed by a CONTINUE

statement. This construct is added only to save space and writing.

314

PROGRAM ENVIRONMENT

CHAPTER 4

When a Tree Meta program is compiled by the metacompiler, a Fortran

version program is generated. However, it is not a complete program

since several routines are missing. All Tree Meta programs have common

functions such as reading input, generating output, and manipulating

stacks. It would be cumbersome to have the metacompiler duplicate

these routines for each program, so they are contained in a library

package for all Tree Meta programs. The library of routines must be

loaded with the compiled Fortran version of the Tree Meta program to

make it complete.

The environment of the Tree Meta program, as it is running,

is the library of routines plus the various data areas.

This section describes the environment in its three logical

parts: input, stack organization, and output.

1. Input Machinery

The input stream of text is broken into lines and put into

an input buffer. Carriage returns in the text are used to determine

the ends of lines. Any line longer than 72 characters is broken

into two lines. This line orientation is necessary for syntax

error reporting, a possible anchor mode, and a source listing

option.

It is the job of routine RLINE to fill the input line buffer.

If the listing flag is on, RLINE copies the new line to the output

400

file. There is a buffer pointer which indicates which character

is to be read from the line buffer next, and RLINE resets the pointer

to the first character of the line.

Input characters for the Tree Meta program are not obtained

from the input line buffer, but from an input window, which is

actually a character ring buffer. Such a buffer is necessary for

backup. There are three pointers into the input window. NCCP

points to the next character to be read by the program. This may

be moved back by the program to effect backup. MCCP is never

changed except by a library routine when a new character is stored

in the input window. NCCP is used to compute the third pointer,

the input-window pointer IW. Actually, NCCP and MCCP are counters,

and only IW points into the array, which is the character ring

buffer. MCCP is never backed up and always indicates the next

position in the window where a new character must be obtained

from the input line buffer. Backup is registered in IBCK and is

simply the difference between NCCP and MCCP. IBCK is always

negative or zero.

There are several routines which deal directly with the input

window.

The routine PUTIN takes the next character from the input

line buffer and stores it at the input-window position indicated

by IW. This involves incrementing the input-buffer pointer,

or calling RLINE if the buffer is empty. PUTIN does not

change IW.

The routine INC is used to put a character into the input

window. It increases IW by one by calling a routine, UPIWP,

401

which makes IW wrap around the ring buffer correctly. If there

is backup (i.e" if lBCK is less than 0) flECK is increased by

one and INC returns, since the next character is in the window

already. Otherwise, MCCP is increased by one, and PUT IN is

called to store the new character.

A routine called INCS is similar to INC except that it skips

all blanks or comments which may be at the current point in the

input stream. This routine implements the comment and blank

deletion for .ID, .NUM, .SR, and other basic recognizers. INCS

first calls INC to get the next character and increment IW.

From then on, INC is called successively until INC returns with a

non-blank character. The nonblank character is then compared with

a comment character. When the end of the comment is located,

INCS returns to its blank-skipping loop.

Note that comments do get into the input window, but the

printer IW skips past them.

Before beginning any input operation, the IW pointer must be

reset, since the program may have set NCCP back. The routine

WPREP computes the value of IECK from NCCP-MCCP. This value

must be between 0 and the negative of the window size. IW is then

computed from NCCP modulo the window size.

The program-library interface for inputting items from the

input stream consists of the routines, ID, NUM, SR, LET, DIG, and

CRR. The first three are quite similar. ID is typical of them, and

works as follows~ First MFLAG is set false. WPREP is called to

set up IW, then INCS is called to get the first character. If

the character at IW is not a letter, ID returns (MFLAG is still

402

false); otherwise, a loop to input over letter-digits is executed.

When the letter--digit test fails, the flag is set true: and the

identifier is stored in the string storage area. The class of

characters is determined by an array (indexed by the character

itself) of integers indicating the class. Before returning, ID

calls the routine, STORE which updates NCCP to the last character

read in (which was not part of the identifier). That is, NCCP is

set to MCCP + IBCK - 1.

The occurrence of a given literal string in the input stream

is tested for by calling routine TST. The character count and the

string are passed as arguments. TST deletes leading blanks and

inputs characters, comparing them one at a time with the

characters of the literal string. If at any point the match

fails, TST returns false. Upon reaching the end of the string,

TST sets the flag true, sets NCCP to MCCP - 1 + IBCK, and returns.

In addition to TST, there is a simple routine to test for a single

character string (TCH). It inputs one character (deleting blanks),

compares it to the given character and returns false, or adjusts

NCCP and returns true.

2. Stacks and Internal Organization

Three stacks are available to the program. A stack called

MSTACK (MARK-STACK) is used to hold return locations and generated

labels for the program's recursive routines. Another stack, called

KSTACK (KEEP-STACK), contains references to input items. When a

basic recognizer is executed, the reference to that input item

is pushed into KSTACK. The third stack is called NSTACK (NODE­

STACK), and contains the actual tree. The three stacks are

403

declared in the Tree Meta program rather than the library: the

program determines the size of each.

At th~'beginning of each routine, the 16catibnthat the

routine was called from and space for the generated labels are

placed on the MSTACK.' The routine is then free to generate

labels'or call other routines. The routine ~hds by popping

.up the generated labels from MSTACK and returning to the location

on the top of MSTACK.

KSTACK contains single-word entries. Each entry will

eventually be placed in NSTACK as a node in the tree. The

format of the node words is as follows: There are two kinds

of nodes, terminal and nonterminal. Terminal nodes are

references to input items. Nonterminal nodes are generated

by the parse rules, and have names which are names of output

rules.

A terminal node is a 36-bit word with either a string­

storage index or a character in the address pprtion of the

word, and a flag in the top part of the word. The flag

indicates which of the basic recognizers (.ID, .NUM, .SR,

.LET, .DIG, or .CHR) read the item from the input stream.

A nonterminal node consists of a word with the address

of an output rule in the address portion, and a flag in

the top part which indicates that it is a nonterminal

node. A node pointer is a word with an NSTACK index in

the address and a pointer flag in the top part of the

word. Each nonterminal node in NSTACK consists of a

nonterminal node word followed by a word containing the

number of subnodes on that node, followed by a terminal

node word or node pointers for each subnode.

404

x

For example,

TREE

ADD

MULT

Y Z

NSTACK

node ptr ~

NSYMTB item
P (X)

2

node ADD
"'lII

NSYMTB item
P (Z)

2

node MULT I~

KSTACK

I node ptr ·1
Points
to Top
of Tree

KSTACK contains terminal nodes (input items) and

nonterminal node pointers which point to nodes already in

NSTACK. NSTACK contains nonterminal nodes.

String Storage is another stack-like area. All the items read

from the input stream by the basic recognizers (except .CRR, .LET,

.DIG) are stored in the string-storage area NSYMTB. An index

into NSYMTB points to the character count for a string.

All the items read from the input stream by the three basic

recognizers, .lD, .NUM, .SR are stored in the string storage area

NSYMTB. As well as the character string which was recognized,

three other items make up the entire entry for any string. They

are a value entry, a flag entry, and an entry indicating the string

character count.

405

declared in the Tree Meta program rather than the library: the

program determines the size of each.

At th~'be~innirig of each toutih~, the l6catibnthat the

routine was called from and space for th~ generated labels are

placed on the MSTACK .. The rotitine is then free to generat~

labels'or call other routines. The r6utine ~hds by popping

.up the generated labels from MSTACK and returning to the location

on the top of MSTACK.

KSTACK contains single-word entries. Each entry will

eventually be placed in NSTACK as a node in the tree. The

format of the node words is as follows: There are two kinds

of nodes, terminal and nonterminal. Terminal nodes are

references to input items. Nonterminal nodes are generated

by the parse rules, and have names which are names of output

rules.

A terminal node is a 36-bit word with either a string­

storage index or a character in the address pprtion of the

word, and a flag in the top part of the word. The flag

indicates which of the basic recognizers (.ID, .NUM, .SR,

.LET, .DIG, or .CRR) read the item from the input stream.

A nonterminal node consists of a word with the address

of an output rule in the address portion, and a flag in

the top part which indicates that it is a nonterminal

node. A node pointer is a word with an NSTACK index in

the address and a pointer flag in the top part of the

word. Each nonterminal node in NSTACK consists of a

nonterminal node word followed by a word containing the

number of subnodes on that node, followed by a terminal

node word or node pointers for each subnode.

404

For example,

TREE

ADD

Y Z

NSTACK

node ptr 1\
NSYMTB item

P (X)

2

node ADD
'"II

NSYMTB item
P (z)

~.

2

node MULT .~

KSTACK

I node ptr ·1
Points
to Top
of Tree

KSTACK contains terminal nodes (input items) and

nonterminal node pointers which point to nodes already in

NSTACK. NSTACK contains nonterminal nodes.

String Storage is another stack-like area. All the items read

from the input stream by the basic recognizers (except .CRR, .LET,

.DIG) are stored in the string-storage area NSYMTB. An index

into NSYMTB points to the character count for a string.

All the items read from the input stream by the three basic

recognizers, .ID, .NUM, .SR are stored in the string storage area

NSYMTB. As well as the character string which was recognized,

three other items make up the entire entry for any string. They

are a value entry, a flag entry, and an entry indicating the string

character count.

405

index to
NSYMTB -+

--

.__.-
C

A

T

3

(

(
\
".)

+value

+flag

+string

+character count

A search of NSYMTB proceeds from the bottom up--or the last word

stored. The bottom up search combined with the appropriate settings

of the flag entries facilitates block storage of variables, as

ln ALGOL.

Tree Meta provides two routines for setting and testing

the flag-word in NSYMTB. TURN is used to set the bit pattern of

the flag; for example, TURN(40,-40) would turn "on" the 30th bit

of the flag word in the last string referenced by ISTAR. TEST is

used to test for a particular flag; for example, TEST(40,-60)

returns MFLAG = 1 if the 30th bit of the flag word is "1" or "on,"

and the 31st is "0" or "off."

TEST and TURN are implemented as follows: if B is the first

argument and M the second (the mask), then:

TURN: FLAG = OR(B,AND(M,FLAG))

TEST: compare B with AND(B,OR(M,FLAG))

Thus, TURN(40,-40) considers the arguments as octal numbers, which

when converted to binary and arranged as above, leave:

BIT

M

FLAG

B

FLAG

0 30 35

0 · 011111

0 · 000000

0 . · 000000

0 · 100000

0 . · 100000

406

The test routine works in similar fashion as arranged in the

way described.

Other routines perform housekeeping functions like packing

and unpacking strings, etc. There are three error-message writing

routines to write the three types of error messages (syntax, system,

and compiler). The syntax error routine copies the current input

line to the output and gives the line number. A routine called

FINISH closes the files, writes the number of cells used for each

of the three stack areas (KSTACK, MSTACK, NSTACK) and the number

of characters read, and terminates the program.

At many points in the library routines, parameters are

checked, and if they are out of bounds, the system error routine

is called. This routine writes a number indicating what the

error is and terminates the program. The error codes are

listed in Appendix C.

Additional library subroutines generate labels, save and

restore labels and return addresses on MSTACK, compare flags in

NSTACK, generate nodes on NSTACK, etc.

3. Output Facilities

The output from a Tree Meta program consists of a string of

characters. The output facilities available to the program consist

of a set of routines to append characters, strings, and numbers

to the output stream.

A string in NSYMTB can be written on the output stream by

calling the routine OUTS with the NSYMTB index for that string

in ISTAR. OUTS checks the NSYMTB index and generates a system­

error message if it is not reasonable.

407

A literal string of characters is written by calling the

routine LIT. The arguments are of the same form as TST.

A number is written using the routine aUTN. The binary

representation is given and is written as a signed decimal integer.

All of the above routines keep track of the number of characters

written on the output stream NU. Based on this count, a routine

called TAB will output enough spaces to advance the current output

line to the next tab stop. Tabs are set at 10-character intervals.

The routine CRLF will affect a carriage return and a line feed and

CIa will reset NU.

The Tree Meta system provides a routine that is very convenient

for debugging. This routine, METSTA, will print out the state of

the system at the point of being called. METSTA will print the

information in the three internal stacks, the line currently in

the input buffer and output buffer, the values of the character

pointers, the symbol table, MFLAG, ISTAR, and several other items.

408

A DETAILED EXAMPLE

CHAPTER 5

.META EXN~PL (name of element on unit D)
% TREE-META PROGRAM EXAMPLE %
.LIST SOURCE

EXAMPL = ! "MFLAG=l" ! "ID1ST=2" % IN 1108 Till1ETJ.l., THIS FLAG (ID1ST)
MUST BE SET SO THAT THE PRE-DATA WILL NOT BE TRANSFERRED
TO THE OUTPUT STREAM BY THE 'EXAMPLE' COMPILER. THE MFLAG IS
SET SO THAT TRMETA WILL NOT FAIL AFTER THE FIRST STEST.
LOOK AT GENERATED CODE FOR EXAMPLE OF THIS %
"EXAlvIPLE" .ID % ID WILL BE THE NAME OF THE PROGRAM %
(FLAG/ . EI~PTY)

NEXTGF ;

%***%
% THE FOLLOWING PARSE RULES PROCESS THE BEGINNING OF THE CARDS %

NEXTGF = $ (STATEMENT *)
"END" ?1? {\, "END" } .STPMTA()

STATS:IENT = -fiEND" {\} =>.COL(l)
(COMMENTCARD/LABEL (GFSTA/FLAG/FORSTA)?2E

COI~1ENTCARD = +'C {'C} .SET() => .BLANKC() .COPY() ;
% -SET AND COPY PASS STRINGS THROUGH 'I'M DIRECTLY TO OUTPUT STREP

-BLANKC TESTS FOR THE REST OF THE CARD BLANK. %

LABEL = .NUM {*SO} 1$ (+' {' }) ?3E / 7$ (+'

FORSTA = .CHR {*SOC} .SET() => .BLANKC() .COPY() ,

GFSTA = MAKEBREAK/LOCAL/GFOR:

E = .EMPTY .RESET () => I; $ (STATEMENT *) "END" ?99E {\,. "END"} .STPI"lTA() p

~***~
o % THESE PARSE RULES BUILD A TREE % 0

MAKE BREAK = "l'vlAKE " ASSEXP ?10E :HAKE{l}/
"BREAK" ASSEXP ?llE :BREAK{l}

ASSEXP = ITEM '* ?12E ITEM ?13E '= ?14E ITEM ?lSE :TRIPLE{3}

ITEM = '? :FLAGWORD{O} / PRIM;

PRIM = <- .NJM ' .. NUM :REALNUM{2} /
.NUIJi /
VAR /
" +.CHR ?20E $(-' I +.CHR :DO{2})
; (EXP ?22E ') ?23E :PAR{l} ;

500

I' ?21E ~LIT{l} /

VAR = .ID (' (EXP ?30E $(', EXP ?31E :COMMA{2}) ') :SUBVAR{2}/.EMPTY);

EXP = TERM ('+ EXP ?40E :PLUS{2}/I- EXP ?41E :MINUS{2}/.EMPTY) ;

TERM = FACTOR $('* FACTOR ?42E :MULT{2}/I/ FACTOR ?43E :DIVIDE{2})

FACTOR = '- ~ACTOR ?40E :NEG{l} / PRIM;

LOCAL = "LOCAL" .ID :LOC{l} ;

%***%
% UNPARSE RULES FOR THE ABOVE PARSE RULES %

BREAK{-} => "CALL BREAK (" *1 I)
MAKE {-} ~-:: > "CALL I1AKE (" *1 ') ;

TRIPLE {- , - , -} => * 1 I, * 2 " * 3 ;
DO{-,-} => DOTST{*l} DOTST{*2}

DOTST{.CHR} => *l:C
{-} => *1 ;

DIVIDE{-,-} => *1 1/ *2 ;
COMMA {-,-} => *1 " *2 ;
PLUS{-,-} => TNEG{*2} MINUS{*1;*2:*1}/

*1 1+ *2 ;
MINUS{-,NEG{}} => PLUS{*1,*2:*1}

{-,-} => *1 '- *2 ;
TNEG{NEG{}} => .EMPTY ;

MULT{-,-} => *1 '* *2 ;
REALNUM{.NUM,.NUM} => *1' *2
NEG{-} => 1- *1 ;
LIT{-} => I' *1 1 ';
SUBVAR{.ID,-} => *1 PAR *2
PAR - => '(* 1 I) ;
FLAGWORD / => "1$$$'" ;
LOC{-} => "INTEGER" *1 ! "DATA" *1 "/I*LOCAL I/";

%***%
% THESE PARSE RULES DO NOT BUILD A TREE; BUT OUTPUT DIRECTLY

GFOR = "FOR" ("EACH "/"ALL "/"EVERY "/.EMPTY)
FORASSEXP ?60E "DO" ?61E .NUM ?62E .IDGOT()
%IDGOT PUSHES A COpy OF THE NUMBER ONTO A SPECIAL STACK%
{"CALL GFOR(LOC: +W .W " *S3 " *S2 I, *Sl I)" }
{ #1 , "CALL GINC (LOC: .W ",$" *SO " *S3 I, *S2 " *Sl I)}
$(-.IDTST() STATEI1ENT *) % IDTST TESTS FOR THE NUMBER PICKED UP%{"r "GO TO " #1 - W }
.IDBK(): % IDBK POPS THE NUMBER OFF THE SPECIAL STACK %

FORITEM = 17 .IPUT(5,5H 1$$$')/ % IPUT PUTS A STRING INTO
Si~ING-STORAGE AS IF IT HAD BEEN PICKED UP BY .SR %
. ij /
.NC:M ;

FORASSEXP = ITEM 1* ?65E ITEM ?66E '= ?67E ITEM ?68E ;

%***%

501

% THE FOLLOWING RULES DO NOT BUILD A TREE OR OUTPUT DIRECTLY: THEY ARE
USED FOR FLAG-SETTING IN THE 'EXAMPLE' COMPILER. %

FLAG = DEBUG/LIST

DEBUG = "DEBUG" "ON" ~"DBGFLG=l"/ "OFF" :"DBGFLG=O"

LIST = "LIST" ("SOURCE" ~"LSTSRC=l" ~"LSTCOD=O" /
"CODE" ~"LSTSRC=O" :"LSTCOD=l" /

"OFF" : "LSTSRC=O" ~ "LSTCOD=O" /
. EMPTY : "LSTSRC=l" : "LSTCOD=l")

%***%
.END EXAMPLE

502

C This is the actual "EXAMPL" compiler generated by TREE-META
C on the 1108.
c****~************************
C 1108 TREE - META
C****~********************~***
C FL/\G::, (AtiD Fe ((. eor·1ST .'\11T(;

INTEGER LSTcon,LSTSRC
11',11'[(,[F1 r jviUF
I eFI) pTHFLc
[it\ 'fA IJll~rLG/()c:n UUD (j 0 n (; 000/
rNTE(,[F' i':tr)i·~FL(;

D/\T/\ ;,\DPFLC/()10UliOOOOCOot)/
I rlTEcfr; C!H<FU;
Ur'li\ Ci!I~FLG/Oi.!LjUUUOOOOOO(i1

I hi

DATA • 020UUOOOOOOOI
I~lTFn[H f'IFLC
DATA /00100000000001
II\)1'[(,!::.(,: TDFLG
DATA IDFlC/OOn4UUOnOOOOOI
INTEt;Fk fJIJHFLc;
Lit, T 1\ t:IJr~FLb/O(! 021.) 0 (} 0 [) 0 0 () 0/
IN1'[tf·r:; MFLj\G

I h
Ir\!T[C'f:~F;, ()t~GF~~"C

I)fi T f\ f'bGFL0.. / 0 /
rARAP.~T G~

I r 1,GNLB2vCNlB3
I ~JT[C:F n ff?W:'1 H~

lATA 70~050~050S/

I NCI'iJrr
C;l, T t. i .•·C ~'11.jT n~)I;!:,•. (J~) 050 ~J I
11'-11[:, iT
LATA GTCHR/07605U50505051
1rrITcr:T' nU;CfP
DATA / 505050505051

/()(,:0.1 't.~(100nOfjOOI

r'!~ T/\ r TGFLG/Oi in U2C 0 n00 0 0 nI
1r~T Cc:F t:;

U,:I, II''. (, CT / CliO U1 0 ()(jfJ (1 0 (1 U/

I

c
1. I·,
PIT::>/C!:;\f~i Cll['li'tC 1,< p;\n(.~E

HiTF'CFF iJlJJZ::;OiiOj p n;~;\!""(5nun)

503

INTEGFR NSfBO),LS
INTE0FR NV(72)pIV
HHECEn NU{10C),rU
INTEGEr: GET
INTEGER rNCFLG
INTEC,[R wRK p X\fJRK

C*-***~***
cOMMON ILETFLG/LETFLG
cOMMON IOCTFLG/OCTFLG
COMMON IINCFLG/INCFLG
cOMMON IDIGFLG/DIGFLG
cOMMON ICC/MCCP,NCCP,I8CK
cOMMON ICNT/ICNT~NCNT

cOMMON IMAXMIN/KSPMAX,MSPMAX,NSPMAX,KSPI,MSPI,NSPI
cOMMON IMASKS/AORMSK
COMMON IIME/IME,ME
COMMON IIERR/IERR
COMMON IDBGFLG/DRGFLG
COMivlOfi ILSTFL ~~/LSTCOD, LSTSRC
COH~"lmj IFLGnlc~/PTRFLG, AORFL G, CHRFLG, SRFLG, GENFLG, IOFLG, NllMFLG
COMMON IGNLH GNLR1,GNLB2,GNLR3,MAXGLB,IGN
COf'iMCif,l ICHRSI TR~KHH,NCM!'lT, QTCHR, BLKCHR, BLANKS, BLANKS
COf'.1/vlCf' INTA£l/~JT AP
cOMMON /N~W/NW,IW,IXW,MW

Cm;;~101i INS/tiS .I.XS
cOf'.1~·10'! 1~!lJ/l'HI, JXlJ, IU
COMMON INV/NV,IXV,IV
cOMMON IFLAGS/IMDFLG,LLNFLG
COMMON /MISC/MARK,CIW,SNSP,MSPLNl,I01ST
cOMMON/LSSAVE/LSSAVE
cOMMON IMETAS/MFlAG,ISTAR,lS
COI\1MCH; IKT /KT p KTY
cOM~'1n!i / rGLAFI/ I Gl!\f3
COMMON INCLASS/NCLASS

C***************************THESE WERE PARAMETER STATEMENTS*************~
VICFl G::O
r,'SPL!' i l::-l31
t~T I\h:: l 0
1I.1AXGU)=32767
f<SPI::l
t.tSP J ::;>
HSP1.=l
P8C=f.
IXW="'cOO
LXS=l' n
IXV::7?
:Xt)=lnC

c****~**

504

""-'"

If'JTr:.c'r}< j\Ur::!I.';~.;~<

D/\ T l', /\ Upr,'(S~(/()·"I77 7"'77/
C*~**s*******~~***~*~*~****~**

I i'.iTC:cLP leNT
1. fffF-:r r" f:: r\ICl'rr
} NT Lc+ i"\,jE:

1. f-J 'r E: C:, 'I ~Ji [',
l~iTr:cr:i r~:;T/\i(

:i NTf':.CLF: ';'<C 0', lUCY
I LTE.;,r:; ~,jCCF'

1 ~'j TE(Ch CI1
1!IT E. Cof I:: !<~) F'I',";\ X
rrlTLCFT 'JI~~)Pr'},y
I r'ITF,(;[F N~~Pf.'i~X

1I',JT L cEo f? ~F1 r~, f< t<
.r I'~TL' (',; i \' I (J L, f\n
1 11 TEe r ,< I C~: F

I Gr,l
~<T

t\!sr.t
:)i\~~)r,'

I': I[)J.~~·IT

IS TtJPcI t'-J l' E: c ~~. f\

11',JT [(·F' 1
I tj·r[~(.:,[' F'
I,~,jl E..f' f. j;:,

J. :\ITE~(;... r~

c ~;' :o{: ;;; 'I: ~,', k of: *>~ ,j' *,'i"'i t: .;: '" '" :~ *.1, 0;; .'~ :1' :j; * :'.:j "', ,.

C 1;:1 >lJ i:, ?:.LL T f ::,::::[j TC I T f I.j.:: I • ,~-;':::('T}i[P

)'fJ'fL,t.. j.' ;\lCL.l,S~,;'{CPl"i(;,)

f\f\ j"/\ {.~ ;CL"l\~}:.) ('1) l' T:::: '1. "C~·:~t i(~}

I ~.} , ~:} .'~) Ii :.) I ~:,':~ ? '1 f ~:~ J 2. t ? t '2'; ;:~ " ;.:~ f ? ,<: ,. ~) 1 ;"2 , ? , ~~ , ~ 1 ~: i ? 1 2, ? , ? 1 .~ , ? I ; * l~ ~ ?, 2
2 ! ~ ..) , ~~, I lor JI! ~,:) v:';· , ~') r :") ? L) f ~) ~ t.) f ~) or ~-, I ~') ~ ~), ~ l~~, , ~:'.l r ~~~ t 3 , "5, :i, :) , :1 !' 5 # :~ ~ ::; , ,~~ ,

~'~1. ~ , ~:.i , ~:. 1 ~'.) , !L f ~l'/

C ;1. ~; :l' ~:: .• :i,' * 'r:+: ,.;: :.t.,:?-: ~f: ~~' '~~ '~~ ~~: ;Z.: i"- ::.}; * ':{: i~:f: ~~: *~"l-: :-r:.{:

Cof· 4:;<- :1<,. ·t, :I< '''' :/" :"j< ,.~ '!: '* -;: of' :i-: •. j, '1':Jr'~' t i'" *:'1. * :1- ,'I'

c·(;r,;r-, ::'!'} /i<.~:)~rl\r::r(,/t<~·:T/J,·Ct< (::)Ctl) '~f<><~:;l-), t<~-';F')

C()f';l:'",(;~ i li'l~'~Tf\Ct</j\:~~Tt.,(:,V (7t"}n) ,f'!)<sr)', jJ~>P,

fJX:;; :.:7 (I fi
('OCiI: /i'hY!\HU/~l:)yrnr~(:3~l)O) 11.X~-;~;, L.;;S

L,X :;'~::: :~.l) tl r;
C/\lJ. r r·~ Tl'

(I\LL. it.. nll.~

C j\ L!. _ f' i Ch LL. (~;'" '1 C1 J ~/l' t.f, j ? .../ () 6)

505

3?7bb Cl\LL FINISH
Ct\LL L HHTS
STOr' HlDer'/1P

C EXt\r,'lPL
1017 CONTT1JUF

r,1FLAn= 1
IF{HFlAG) ,3276fS,
I01ST=2
CALL TST(7,7HEXAMPl[)
IF(MFLAG.EO.O)CAlL BIGERR
CALL ID
IF(MFLAG.NE.O>CALl KPUSH(ISTAR+IDFLG)
IF(MFLAG.EG.O)CALl BIGERR
CALL MCALL{$1059,532764)

327bl~ CONT!I'JUE
t'1FLM;= 1
CALL MCALL(S1068,$32763)

32763 CONTTtlUF
IF(MFLAG.EO.OlCALL 8IGERR

3:::~760 CONT1I'1UE
Ci\ LL I\q< Tl'J

3276Cl

32761

C NEXTC;F
106e
32762

CONTHil)E
CONTINUE
CALL MCALL($108U,532761)
CONTINUE
IF (r"TLI\.G) , 32760,
CALL OUTf~EE

IF(MrLAG~EQ.O) CALL CERR(2)
CONTlt,jUF
IF U1Fl.AG) , ,32762
MFL",G:::1
IFPWLAG) ,32759,
CALL TST(3,3HEND)
1EI<F::(1)
IFCtlrLAG.EG.n)CALL FRR«J)
CALL CPtF
CALL TAR
CALL LIT(3,3HENO)
CALL STpMTA
IF(PFLI\G.EO.O)CALL BIGEPf~

CUNTTf!lJE
CALL. ~m,TN

C STAT£:MENT
1 n80 CONT 1 f lUF

CALL ~1P(JSIHKT)

C/\Ll ~<1PUSH (K~~P)

CM.L r,,;PIJSIHNCCP)

soc

C/\t_L T~.)T (j,. .3t-l[~·Jf··)

f\,'!F L~,'\ c\~.. \-1 OL) { iVlf: t /\ C1 ·f·:; t 2)
r'JCCr)=f'~POP (I~; T'~JP!))

~< ~~ r·t
:: :',,' F) Op (I::; TCHJ D)

KT :.:. :< [' 0 p (J:j Tl)1") D)
IF(~:rL.I'G) Ij?7~)e~

C/l.LL Ci::;L.F
COi\T r hUE
C/\LL, COL.(1.)
IF (f"l L il(;) p ~ :l?7~i6

fJC C1":: i iC CP'I,1
GOlO :52757
COfn Tl'ilJF
C/\LL rlC j\lL (~r·1119 ~ 1;:5~n55)

COnlii'iUF
If: (["! L/\G) ? 1 3;~7~)11

CALL, r<:CALL ('J; 112:7, S,32753)
CONT J rl(,IF:
I F" (i'·.'; r·'-' L ~, G) , 3? 7 ~~) 2 ,

32745

32.ni2
3;:27:)4

CALL MCALL($1135,$32751)
cm'iT Tr,JUF
IF (rT'L/\C) , ;' 3?7:')ll
(i'lL!, fiC!\LL.(1,105Q,S:::)?7 1·i9)
CO~riJ r:Uf::
IF (r<FL. ;\(j) , ? 3;~7 4£\
CALL MCALL($1144,S32747J
COf\JTTflUC
COI\JT I flU!'"
COi\JT Tt,!LJ[
I[f(['::::.:{2)

IF UTll\(j * EO. I) (fiLL [F"f-< ('I 1 Ei;:»
C()~lT J hllF'
COI-ITTi'll)f;
IF(~~LAG.EQ.o)CALL 8IGERR
CONT Tl'iUC
CPI LL. H~ n,j

c CO[vi~:Lf'!T Ud<D
1119 CO~\iT J i"l):::­

Ti'\!CFU3:::::1
Cf'.L!.. Tel j(JHe)
Ii'!Cfi (~=o

IF(tTL1IG) , 327 Li'6r
Cf\L.L C TO (JHC)
CM,l. ~,C r
I F (~i Fl./\ G• EQ« U) Ci\ LL PIGEfd~
CONT T:;l)F'
Ct.Ll. r'Lrd'W,C
IF(~J:FL.f\G) f v::;;'?71.r.Q

32747
:')27LJb
3;o7bO

",

507

c L.r\bf~L

11.27

rj(CT::.:f'C(FJll
GO Tc ~; ~~7J.i~)

((JilT ,H)F~

C/\ L.L C() (' y
IF (~ r·j..-/\.(:,._~.EO~U) (I\;",.L PIGEf·;'P

CONT 1r:.ur-'
Ct\l.J t jU~'1

IF(I\!FU\Gll:'<:'274::"
I~,T!!' ::: IS'j /\!~:+f!lY:n.G

Cf\LL I/Plj~:;h (I ~;T f\[<)

Ti\1E:;i<.T
I :.; Tt ;'~_= 1\ f'.IO (I ;\'1f~. " /~, 1""'1 r~l ~/i S~:)
I F (,\ f" L (l iv', l~ ; t) T F~ F L. C) • F (: • P TFI F LC) CIJ LL CF r~ R (Ii)
C/\LL. C'UT~~

ChLL ~:,f\V

Ci\L.. L i':I'i.ISH (-1)
C(IN T' 1 f'-lt)C
It'lerl G::: 1
Cf\U TOH l.H
I l"iCFI. (,::: il
TF' (r i· L./\ (;) 1 :'l:2 7 LI 1 I

C/\LL CrO(lll)
COln,r,'ll[,"
!''': ~.'.; 1" t\ c: l(~ (j'J1 SF)) :: r<~)T /\ C};" (~"~l ~.; 1)) -f 1
IF (i >~ T1\ CI" (H~; i') -:; 2 7 6 7) ~ f :) 2 7 4 (1

1F (t< r L. /\ (:;) 1 , j~! 7 [I ?
IF (;",T/\Cf" (i'-SF) • Cl: .1) f'4FL/;G::;:1
(;·0 TC; 3~)759

Cf!LL i:~';T!~

T[J\: ~ (~\)

rf-:- (;',....;F· L 1\ {; ~ EH 0 , U) c- ;:\ L.L F' P r~ (tL, 1. 1 ~ 2)
GO 'r("; 5~7:)e

C()l-,-!T "T f'lt}F
C/\Ll ~~.!\\I

CP. L.l.. f- :I) l J~..; j I (1l'''' 1)

(:flU. Tei l (1f!)'
Hie: I G~C;

rF (;\: r:- i../\ (1) f :'-)? 7:3\ h ~

C/\L.L C.rC('tI·;
" 7:Jf) C(;l{-i"j :"j':l)F

508

CO TC.I 3?7~~q

3?7:j~)

3-::"7 :)[~

32738

[<PUSH (rST!\fhCHf~FLG)

C FORSTA
1144 COi<-:';

IF (i\·:r:" L.j\ G"' f\lF:~, t"l) Cj\
IF (;<F,"1..,}'\(:;) ? =)27::5~) 1

I rvl[~ ::-~.:'. T
I ST)\ r·'~:: /\ 01 D (J > ¥ l\ Q F\ r\.~ S~<)
IF' ;d··i~::' (T{v1E :,; PTr<,;:--LC) G F"C; ~ r~TF:FLC;} CI'LL CFRR ([~)
F L_LJ {n ;' 6 ~ 1 S Tl ; :'"..: F..' L0 (j 0 i' (, p I ~JH:~~)
C/\Lt_ C °i: n (elf< (T~~Tt)PO ~ E3L!\~,j}<~);')

32732

32731

32733

C CFST l\
1135

32728

3;;:726
:j2727
32729

C E
1152

CO~iT Tt It.JC·
C;\LL t::,L,f"i\JhC
If·:: {\\:;"L,:\()) 1 ;.,3?73:L
j\jC Cr-1 ;:: r: ccF)·~· J
GOTe :'12732
COrn- Tf"lJ[
Ci\LL COpy
IF UJU\s. EO. o! Ct\LL en GERi<'
C()f~-l; ~·jUF

CI\LL. 1'.';rnN

CO>J"!"" Tj,,;UE
CALL ~CALL($119R.$32730)

cor·iTT :'1U[=-
TF"(L.!\G), ,3~n2g
CALL MCALl($J206,$32728)
c ()~\j'r '{ f.,;l)F

J F-~ (:\ J~' L !\ G) r r =)? 727
CALl.. r·1CALL($1.213,$32726)
COf\JT Tj\il)[
C()f'·jT 1. r,!(iF
C() f"J T T!_!i)f~

IF (1'·:r:L/\G) ~ 32725 ~

509

C/\LL j.lI::<:,[T
IF(f\rLAc;.FO.O)C!il.L flIGEpR

3272'4 CONT \ f';llr
C/\Ll Tei! (HI;)
IF OrlAn) v ,3?723
hlCCP:;;flCCP" ,1
GOTe :')?72L~

32723 CONT I ~lUE
3272? CONTHJUE

CALI MCALl(\10BU,$32721)
3272.1 CONT 1 tlUr

IF (fT" LAG) , 3272 U,
CALL nUTHEE
IF(MFLAGoE0 0 0) CALL CERP(2)

327~:O CONTTNUF
IF(f,iFtAG),,32722
HFLJC:::1
IFU'FI/\G.EG.I)C/\LL eIGEPR
C/\LL T~JT (3, :'5HEr,)i)
Iff<f ;; (qg)

I F (fl.: f' t, AGo [0 • I,') CAL L t FH ((t, 1152)
CALL CI\LF
Ci\LL Ti~fl,

C.f\LL L J T <:::i, :-d'tYil)
CALL ~,;Tpr'.HJ\

IF(~fL~G.~0.0)CALl BIGERR
:"l~;7;;;:t) CoriT i i\1! JF

Cf\LL t·il;o,Tf')
C tv1!\KEnREI K
1198 corn '" hUF

Cf\U TST (:), ~~:;Ht'lt\V[

IF(~:rt M::) ,5271'),
CI'LI riC /ILL ('1, J 23P" S-,;'1271 B)

;1;:711: COt,J'IT!,llJF
IL.i<F:::lln)
T. F (1.'r l f'.(;. fC'. f') Ct'J L L F: F'F< ('1.1 :!5:~ l
Ct\U l'lllY ~ 'b 1~:':'U i
Ch Li \I..<!< r'··lfi (1)

C/Ll '1':;1 (C" (! iLF!:-tf<'
TF~: /\(;)~~~~27.lr:j~

C1\ \V;C /\ Lt,. (tf ~i ?:-) e. f ~,l ~':;2 71 t::i }
c
Uk,.:: (l'! l
11= (i l LM,. fC. 1. 1) C.M.L [PH (il1.1~)2)

Cf\i,,,L r';f')L.D (:b J27~~)
(J\LJ ~wr'ID(.1.)

510

·--r-'-..'...... ., .:.,~ _{:i<;!2~.;i~~~~r"<·~*~~:~~,~~di;d4~,~~:,-"",:"",,:-;,:::-,-,_
""""i'1,

...

3~'7J6 COrllTi1UF
::)~·7J.7 COUTdiUF

CALL. i'l!nfl
C 1\~iSLXP

1230 CONTH;qr:'
CAU., I'<C ALL (<j,J 27(,1 1 sr.3271/+)

327.1/+ COili 1nUF . .'
rF (i·ij:L AS J ? 32713 f

Cf\LL TCH (ltH,)
IEnF,::{l?)
r F (tr:L i~ r, • E(; • ()) C!\ LL FI'm (s: 1 l:')?)
CALL MCALL(S1279;$327121

327t2 COflT:r·jUF
I [i<ii:: (1:'\)
IF(~FLI\G.[0.1)C~LL FRR(s11521
CI\LL Tc:H (HI::)
1EI;I<;;;:(14)
IF(~TLAG~EG"O)C!·.LL [Ri(vrll52l
CALL MCALL($127Q,S32711J

32711 CONTINUE
rErw= (1"1)
IF (HFU\G. CO. t' l CM.,L . EHR' "'1 j 52)
Ct\LL t';DLfi ($130(3)
crILL f~f\~ID (3)

32713 CONTINUF
CALL r\'!r~ TN

C ITEt"l
1279 CONTINUE

CALL TcH (H!?)
IF (r<f:'U\Gi 73271\1,
C/ILL. I'JDUH ~H319 J
CALL MKND(OJ
GO TO 3?709

32710 CONTHIUF,"
CALL MCI\Ll($133U,S32708)

32708 CONTfNUF
32709 CONTINUE

CALL HlnN
c prd~1

1330 COrn Tl-ilW
C/',l.Lr':AV
CAL! tllJM
JF (~!FLAG. f\!E • C >C/,· L.L I<PUSH (1ST/!.RH:UiYiFlJ';)
I F (;.:r U\r;) , 32 -; G7 t

ClI, LLTcH(1! I.)
IFOTLi'e.GJ ~32706,

cr\Ll i:U:"l
IF (r+LAG. tiE. (J) (l\LL f,PUSH(IST/I,R+~'UMFL(;)

511

32705
32706
32707

32702

32699

IF (r·q L1\ Ci) g ~J 2'"705 9

Ct\LL flDUj ('H :'iL! U!
CALL r·H<J,ID! 2)
COrlTIi\;tJF
CONTINUF
CONTTr·1UF
C/\LL. R5TR
IF CHr."LAG» p ~ 3271.14
CALL tlUM
IFCMFLAG.NE.OICALL KPUSHCISTAR+NUMFLCI
IFO·:FlAG) 0 ,~)?703

CALL MCALL.($1346v$32702)
CONTTtJUF
IFCMFLAG)u,32701
CALL TC~H H~ W I
IFCMFLAG).32700.
INCFLG=1
CALL. OIR
IF(MFLAGeNE.OICALl KPUSH(ISTAR+CHRFLCI
INCFLG:::O
I Er~ F':: (2 [))
IF(MFLAG.EQoOICALl ERR($1152)
CONTHiUF
CALL MPuSHCKTI
CALL MPI JSH (KSP)
CALL f\1PIISH (Neer J
C/\LI. TelICHlf)
MFLA~=MoD(MFLAG+l,21

NCCP::MPoP(ISTUPD)
KSP::r<poP (IST1JPD I
KT :::1.1POP(ISTUPO)
IFO/1FLAG) ~32698.
INCFLG=l
CAL.L CHr~

IFCMFLAG.NE.O)CALL KPUSHIISTAR+cHRFLGJ
INeFI (;:::0
IF(~FlAG"EQQU)CALl BIGERR
CALL M)LB~g;13~)61

Ct\Lt ~iKhiD i 21
CONT 1 tJi)F
IF (r'T LAG) Q ~ :i~~69q

MFUC:::1
IFU,:FLAG.U-)oUlCl\LL PIGEFH
Ci\LL Tetl(IHq)
IE.!~F:::(211

T.F(~·'rLl\C';9EOolj)Cf\L.l CRP('lll
CAU t'DU>' (Sc.l:"'671
c/\u. ~j!f<.i"jD(ll

512

32695

G() 'T' C> 3 ? E) 9 7
ce;\!! Il-:U;:::
C/\LL TC;-'1 -{ .1c··1 ()
T'F (jV;j:'L,{\G) f 52696
CALL MCAl._L(Sl.373p$32695)
CONT Ti'-'jl)E
I Ef<!',:: (2?)
IF (I,' r;.- U\ CO " c~ () "I)) CbLL. ERR {'£ 11 52)
C/\LL

3?696
32697

32703
32704

C Vf:-.R
1346

32692

3:~691

32689

32690

32693

I
IF(AC.EQ.OICALL ERR($1152)
C/\LL ~H)LR (513[19)

C/\LL ~1!!<f\JO (1)
CO:'!T Tr:Uf~

C()rJ'(~l ~Jl)E

COf\JT Tj\jljE.
COi'H TH)f-~

COl"-jT T1'.llJE
C/\LL ~!J<TN

CONT TI':U[
C/\LL 10
IF(M~LAG.NE.U)CALL KPUSH(ISTAR+IOFlG)
IF (f,":FL"l\G) ? 32(,9 L;.. ~

CALL. TCH(lH()
I F (tvT LAG) 1 32693 1

CALL MCALL($1373,$32692)
COrn IiJUE
IEf<n::(30)
IF(MFLAG.EO.O)CALl ERR($1152)
COi'n If\;UE
CALL TcH(lH 1)

IF (i'vl;: L. /J;) ~ ~~ 2 6 9 U v
CALL MCALL($1373,$32689)
CO~jTTi'JUF"
I Ef<F::: (::i 1)
IF(MFLAG.EO.OlCALL ERR($1152}
CALL. f\IOU::H S, 1.Lf 07)
CALL MKNO(2) .
CONT: f\IUF .
IF(:Jr-:LAG) 9 ?3~~691

tviFU\G=J.
IF(~FLAG.EO.O)CALL BIGERR
CI\LL Tef-H 11-1))
IF(MFlAG.EQ.O)CALL BIGERR
Cj\!~L ~!DI_B{SlL\16)

C/\lL r/f<~jD (2)
CONTTf'!LJE

513

32694

C EXF'
1373

32683

32684

32687

C TERiVl
1423

32681

32679

32677

32678

i :::::: 1
cmil f'iUF
Cl),!i ~'ir\TN

CCti\.J'l T~·;l.;r:,·

Cj\:_~ ~KI\,LL{1'14239$3:?6,g8)

C 7' f\!(,JF'

I (;'TLi\(',), 2\2hB7,
(I'lL! Tr.t--HIH+)

CALL ~CalL{$1373,$326B5)

1EJH,::; (I.j n)

GO ft' 3;:>6B4
CONTT!iUF
CfllL TCH (lH-)
IF (~AFLAG) p 32683,
CALL MCALL($1373,$32682)
CONTiNUE
lEPF,::{1-i1)
IF(t'TLAr,oEOoU)CI\,LL FRR($1152)
CALI t"DLP!ilIJ4B)
CttL! fv:~<~ln(;~)

CO~JT Tfil.lt::"

CONTiNUE
IF(MFLAs.EG.O)CALL BIGERR
COi\J'T 1~iUF
C/\Lt ~"PTN

CONT HiUE
CALL MCALL($1457,$32681)
CON1'rt\iUF
IFO,1FLAG) ,3268U,
COj\JTINUE
CALL TcH (Vi*,)
IF (Hr:'U\G) ,32678,
CALL MCAlL($1457,$32677)
COrn J f\iUF:
I Ef;:p= (4;:;")

IF(MFLAG.EQ.O)CALL ERR{$115;?)
C/'lL NDU3($lq·69)
CALL. ~'*ND (2)
GO '1"':.' 32676
COf\n 1fiUE

514

32676

32680

C/\Ll. .["(:!--j (li-·;/)
TF-~ (\:;F L II.. (j \) (,7 j ?

CA~_l,_ ~~(:ALl(SlL}~7)S32674)

IF(~FLAG.EQ.O)C~LL ERR($1152)
Cf\LL r\.~Dj".[3 (~-},:,lL!·e3)

C!\LL r.'I\['W (2)
COW!"T
COt,IT TiJUi=:
IF (r,n UIC;) ; ? 3?679
Mi:' L t, (,:: 1

I F (I': r: c/\ (, • EO. ()) C!\ l L 'fH GEHR
COf'JT Tf')UE
C/ILL Mf-(TN

C F(ICTOR
1457 CONTINUe

crIll TOJ(1 H-)

32670
32671

C lOC/\L
1206

32669

C br~Er~K

1272

CALL MCAlL($1457,$32672)
COrn 1 HJt:
IERf~:: (LH1)

IF(MFLAG.EG.OICALL ERR($1152)
CALL r'iDlE (~G lLf89)
C/\LL. icH\0lD (1.)
GO TO 32671
CONT I f'iUE
CALL MCALL($133Ur%32670)
CONTIHJF
CO[\nHIUE
C/\LL Mfnj\]

C0 r,n Tf'ilJ E
CALL TST(5,5HLOC~L)

IF(HLM.;) 1~)2669p

CALL ID
IF (~:FU,G.N[.O) C!\LL KPUSH (ISTMHIDFLG)
IF (:\FU\G. EO. U) C/\Ll ElJ GEf\R
C/\LL r<nu;:;. (':),11195)
Ci\LL, I·'KI'.]O (·1)

CO;\iTHiUF
CALL. Mini\!

COi'JT J i'!UF
C(ILL EEG,N
ICNT:.:1
IF (l,iO!T • NE: • I (NT! tJiFLAG=O
IF (f'"n,!\G) p 3266e p

515

32667
CALL DOIT($32667)
CONT r t·jUf:
IF 0+ LAG. EO. Ii) Ct,L,L CERP (1)
C1\ LLeI 0 (HI))
COi<J:'Il'iUF
CflLL r/!<TN

1~.5n C()i"'~T'Tt·H.!F

C/\LL fTc!',l
I Ct'-j~r ",.,:t
IF (;',:i;-'\\jT $ ~ Ir'f--'~T) f\i~Fl.~I\G=fi

1Ft! L!\t;} y3~:6L6~

Ci\LL lIl{lU,lOilCALL Pl\I<E()
J.j\!E::.vr
I .f T (I)
C ! OTT(~.,3?66~)}

3;;:r,6~) C liUr
IF(!i' LJ,r,:.fO.u) en.L. ecrU"(ll
C/\ Lt. C{() (1 ~,,~,))

f'. (()~,j"f'Tr<t:'F'

C/\L.L. L~;'~T\j

C TidYL [
L'IOB nlUF

C:\L. t, r,::' F' :;N
I Cr·J '1':: ~:'S

3;.i66J

:'526f.2
3;;6(4

IF(!!CriT 41'1[. !CHi'} [·/lFL/\G::n
1F \ ;~1r L. i\~} f 3.2:t~f)L~,

l!\;iE:::i'T
Ii\;1[::::C:FT (1.)
t/ILL. nOn'(S:<3?663)
COtrr 1flUF
IF (riFl. /\G) ,3260;') V

Cr,LL CI()(IH,)
H~[::':VT

HiC=CJ: T {2}

c }I'JUi'
IF{t"rL;\c.FO.iJ) (f...t.L CEf\P(l)
C/\L,!. CI0(Ji't)

1r'lF;;;" CT \ ::'1)
CAL L r,0IT (:1, 32 6 f,\ i)

CCt··.iT 'j f·itJF·
COf\t.T Tf\it.JE
cmn rHIF

516

C DO
1:~56

3;)656
3;.:.6~)7

32659

C DOrST
1503

32655

~265,2

I F (I. C~ iTo ~,J f:: " I C[\J T) L f\ G:: 0
I F { F";. /\ C; }' v 2) 2 b ~:.) \} y

C/\ L L. C) TeL L 1 (g~ 1.5 u ::5 }
,I. ;,.,1["

I ""'cC'f()
C/\LL :<::'!!~;!-:(Ef'~E)

Ie 1\1 T::: 1 C!'JT .;, 1
CA!_L OT(:LL2(S32658)
CONT T1'1
IF (>\r L./\(;) ;; 32(~~:)7 f)

CALL OTcLL1(~15U3)

.1. --c~[~'"r(.2)

CJ\LL. 1<. { I
ICf'JT:::JC +1
CALL OTcLL2(S32656)
CONT'l
C0 ~J 'C Tl\.i UF
CO~n::HJE

(f\ll i\\l~TN

COrJT J flUE
C/\ll. C[(jN ,

IFIAND(NSTACKCKTXl rCHRFLG)QNE.CHRFLG) MFLAG=O
IOn::: I CNT+ 1
IFCNCNT.NE.ICNT) MFLAG=O
IF (r\!: r' L1\ (;) ;' 32 (-) E)~) i

I i'Jj [=: i· ',' T
Ir~'I[:::r~['r (1.)

ISTAR:::ANOIIME,ADRMSKl
Ii'.:'(iJiU(nJ:F:"F'T:~FLG) .EG.PTF<FLG) CALL CERR(l+)
FLD ([~ i' h • J~;TI/i·'O) ::: FLO C30 '(6 • rME:)
Cl\L.L CIO{Cl'::(ISTUPDd3LANK5l)
GO TC)3?6~;i+

COWi' J f,:Ui::
C!\LL DEGr,!
reNT::1
IF (i':niT oNE:. rO,iT) fJFL;\G=O
TF(t':FL!\(~) v:32653¥
I f'ii E=;.< T
I fvlr:::.:CF T (1.)
CALL COIT($32652l
COJ\j T 1 i'iUF:

517

C/\Ll f·Jr<TN
C DIVIDE

c . ~. !',(jc

C !\L,t F[~r~I\J

IC)\J'l =2'
l' C { f T ~ 01 [~ I C~\j 1," l f\~ F i. ,r; G=(1
IF (L-rt f\r~) p 326 1.\ 7 ~

J4 (} 3 C(j!',J -r '1" t,;{ 1[
CI\L.. t. PCr;t\t
rCiiT :..(~.

IFacrn.NE.ICNl) HFU\G=G
IF(r:FLJ\f;) ,326~)1,

IfvlE.::::r<T
IMF=CEr (1)
CALL DOTT($3~~65U)

CONT1HJF
IF (~·i· LAc.;) p 3261.19,
C/\Lt CIOCtH;)
I rv!E:;!~·.T

T. r"J[::'C LT (2)
CALL nOtT($3264R>
CONT rf\;UF
CCi-n] !'il)F
CONT 1fillE
Ci\LL ~J'PTN

~j264e
2,;:(-149
32t:,51

C CO!Vi;·;r
lr.07

1 ~_l_' '1
,.' ~

;:·261.J:+
3~·.6,q ~5

:')?f~J.+7'

C F'L.U:;

t ,I',;,. t.< f·· r (1)
CALL LCTT{l:~;::;'6116}

C01.11 Tfit IF
rF (f r L/\ (',» ~ ::,?;,It ~.:: v

eM.! CJ(H1H,)
rl\1E::.:f(I
r t·)!F :::rF T {;~ I
C/\L~L. ["'f; r T (~p3?lh-q-.!.;)
C()~'·iT H iF'
COf-.·jT, f il iF'
(: () to,l',. ; f·HJF
C/\LL. r'!<Tf'·j

f..

C FE
Ie r,,; T ~.." ~'"

-r F' { t',:'{ 1" /\~;; ;} 3 p

Cj'.l ! eTc 1 (":l:"j:if!)

518

32640

32642

32638

32637
326:59
32643

C fvlI NUS
11+ L1-8

Ie _. ,.;.
Ci\:.. t .. ()-(cLL~~~ (s:·~~')?()L; 1..)

1F \ i~-' ~, .. /\ C;) ;; ::'J 2 6 L! ;.2. ;1

CA!_l.., o~·rLL1.(~lt+[~8)

I ivj 1~.:~ (~; E" T ()
C/\l_L_ 1<[J\ l::;!-~I (I !\AE)
I on::. Ie·; 1

ccor (? j

U:(,:.;'U(IHE,·!)Tf\FLG).i'JE.P FLr-iCALL CEflRD)
I 1\1 [=CF "I"' (1)
C/\L.L. 1<[21
IC _.~cc

C/\LL

(--;0 l(.: 3?6:)9
co!'\rr . fHJE
II\J~C=i<l'

I l',jl[::CF'T (J)
CJ\Ll_ DOyl-{§32638)
CO Tj\ll)[
IF" (r'.:;F-Lhc;) , ~~26:)7 'I

CJ\ LLeT 0 (11"'1 +)
J f\;1[~: t<' or
1 --CLT(2)
CALL nOIT(S32636)
eONT Ti 'UF
C0 fJi- THjf-~

COf\!T:
eOi'll TilUt~

CALL. i\il~ Tf\)

COi~T Tf"Ur~

Cf\L,L LC:
'L CfJT:: I O;T+}
KT X::: I" T ;< ,0' 1
CALL PI1 ($1489,$32634)
IF: (['if}:T .. ~.IC:: 0 InH) iV1FLAG::O
C/\L.L FlI?
COi'i'iTHJ;::
:£ Cf\j -f'O=I C~\\ T·'i·· J.
IF(i!T.NE:,IC!'JT) i0Fl.l\G::O
I F (:1.) r,~ L J\ G) ~ :5 2 6 2S ~-) ?

519

C eTc.u... } ('}, j.!-l

Tj\iC:: (::C ,or (J.,)

CJ\Ll .. I<.PtJ~~:i;(I
TCl·!'!'~·" I Cf'iT-:-.:

U'lL::::\fT (2)
r F" (;';1 D (I [VlE., PTr~F-·L.G) .NF • PTfWlr;) CAL L CEPR (3)
Hiii::;:c;[T (1)
(/\LL !':Pt JSIl{ H:E)
TCI\JT::IC~fr+l

C/\lL, CTClL2 ('h:);;::63:~)

CONT;I'iUF
GO 1 () 2:/;)632
COi'lT ';' i!t)i:::
C/\U. hEGN
I CI'll;:?
tF (i'-lC~'JT III f',lE ~ reNT) ~,~Fl_I•. G::;O

fv:FL/\G::D

..'

CtIL L l:" 0 TT (li,:)~: 6 :5 U)
C'-Ohjj' J l\jl)F

J r= (f· ~ r: l. /\ {;) , 32 h 2 9 ,
Cf\ LLeI 0 (1H-)
:Uv;[::!, 1
H1F::c,[T (2)
CALL., [OTT($3262A)
COr,iT 1 f'Jt,J["
COf\jT T['·JUF:"
COi'JTIf\J[
CO lj'i"i f' Uf:-

C/\L!. t-f\ -ri']

COr':T Tr:ul:::
cr·LL ~"[Gi'j

. Cl'd .. L In 1 ('S14f',C)?<1;:5?G27)
If-- (!' 'c:r T ~ f\!2'~ I Ct,iT) MFL/\G=O
C/ILL PI?
COf"JT Tf'.it Jr
I Cr-! T:::: 1Ci-iT! 1
"L F ()'ie. f", T • f'\jt~ ~ -I C~'iT)
1F (r~·'ir:.'t., 1\ (.; j iJ ~~26c:6 ,
;'11 F- t~ f' C::. 1.
COi\jT") f'jt)F

::>2628
32£;29
326,H
326:')2

C Tt"EG
1 ~,;10

32626

C HUL.T
lq69 CONT TflUE

520

......,

IF (I'.:c !":", ~\jt.= I C>1T) i\:\FL",<\'~;'~::O

1F (\'r" i,_ /\(~) ;) ~J?f)2~:;

32622
32623
3262~)

c nEA,UJUH

COi'iT;
I F (f\ iF L /\ G) ,1 ~);.-: ();2 :;) l

C/\t_L CI()':lil:',::)

C!\LL [")0 I -r (:{)3?622)
Co!\J 'r T I"J lJr:-
COf\JT Tr';UF"
CO!'iTTi"!
,C }\ L. L. i'i;

1 :~}li· 0 Cof\l "r 'I j'

C!\ Lt., l-~; r::: (; t,!
IF(fd;i~r(:\:::~T/\CI«\<T)() ~~f\lU~J1FL..G) oi'!E Q Nlljv1FLG) MFLAG=O
I C:\1 T:: ~!~ C
;< ~r X:;, i< ~I-)(-~ J

. -;

" ..I.

3;>620

3261El
32619
32621

C l·j[G

lL~89

IF (r,:D (N~;T !\C\< (i< TX) 7I"lUMFLG) • NE. NUMFLG) MFLA G::O
Ie f\JT:: I C f,,!"r +·1
I F ([.) C:'IT. Nc: 0 I Cj\['r) MF L J.\ G:: 0
IF (i/ r" L. J\ G) ~I 3? h;:>' J_ ;.
IJVF=:v-(

CALL [()yl"(S3262lJ)
C()~jT Tl',jljF
IF(i,jrLf\(.;i,326.197
C/\L.L CIO(lr1*))
Ii'-'i[::f<T
Iiv;[=cfT (2)
CALL CO'j"T(S32618)
CO~iT 1"1' ;U;:;
co~rr 1 i'iUf'"
CONT}
C/\LL i-.:!n~j

CONT 1 I'JUF
C/\ L. L L· :_:"-.~ (J I' j

IF(rTL/\r,).,:') J7,
C/ILL CIO(U:~)

I ivlE:::I< T

521

3c'61b
32617

C Lll

I f-')r- <'- L T' (,1. }
Cf\ [:0 TT(~h :3 ;:) f) 16 }
COr11
C() f'"l"r' T

Ci\ L L 1\''1< 'rt I

{'
\.

C/\
I Ct-·iT"::.: 1.
IFif!CHT.hT.• lrNT} MFLf,G=fl
IF 0'1' I 1\ (:,! ? :32 is 15,
C/\LJ erG { j iP }

(V H

I fviE ':' i'·, T
rfv\F=(-':,E. T (j)

C!\LL [' 0 TT (~ii:5? 61 ~.)
C()f-,~'r !
I ~::- (r··:: f'.' t /\ c; ~ EC u f:) C!),
Cl\L~L c:r()(lr--;It'

C f'Pi!'!

CE!~H (1)

1!.1.1c, C ~1

Cf\LL \)[(;1;
IF~ {, I'r:; t T/~C'h' (T'~/) ~ IC',r-L,C ~ v iii IiJ:· i.,(j) t,·)~:·L,\r~=n

IF{~'\f'l.AG).32f~11,

C 0TrLLJ rs13P0)

10
11

Ci\L,j

522

,', \..

C i\ Ll_
C()f"~l-I I'J

C

32609
Ci\ LL. f'·'! i< or 1'1

C FL.f\GViORD
1319 CO~n-T

C1\ L.. 1_ L. .I ~~. (:., ;t ~) H ~' ~;i (;: ~i 'I)

CI\LL
C L.OC
149~) COi\IT T

I;=- (r·,j C1\ JT " 1\: ~:.~ ';' C f",; (3::: CJ

IF (f'..1F t... /\ (;) ;, :~'; 2. \::1

C1\ Lt_ LIT 0((j ? r:! ~ i I r\;"r t:: Gr E F?
Iivi[:::::!',T
11\1E~~::rjE-T (}.)
CALL_ DOTT(S US)

IF (;',"; (=' t,. J\ G E~ () ~.. l.l:: eli
CJ\LL Cl·~L.F·

CEF~P{l)

C/\L.L T/\f·;

3;::>6(17

C Gl"C1F::
1213

COt,iT TifUr--
IF(G~r:·I. __ AG~EOolJ) CALlN CERR!1.)
C1\ L_ L LIT { 1- CJ i' 1 (11- i / v,;: L0 CfI, L. v /)

CO~·jT Ti:\W
Cf\lL !\",II

CI\LL. T~:;T z ~:) :Si-\E.:\Cr,j)
I F ([,; r-- L~ /\. c) tJ ~' :s 2 C U~:5

C1\ L. t_ -r :~~ T (Li· ~ Lq -i /\ LL~)
I j:: ((,·i r·- !_~ /\ c~} v 9 ~3 C:, () t.; ?
C/ILL TST (CJ i' ()ht_IJEHY
iV,FlJ\C;:.: 1

523

(: ~;,; C()r\~ r t

1 ~.,:' (f :f' f., i\ G• L. (:.:~ ~ t.! j C/\ i..,l, f:" I Gl:F: F'
C!\LL !','c"tL. (t:: ~)53, ';j·3?60 1)

(iO). CO~.!T I tillE
1E !{ i ';; I Cd) i
J F' (r,· '; r' ~ ",1\ -r; Q E~ G' ~ ij) CAL.l f' p. r~ (,:'f-.] .:t ~);:--)

C:\Lt. '"~'~:;r(2~~ OJ
lU:;, -" ((,1 l
IF{f'f Lto(;oLG.l,YC/1Ll FI,I{:\"q 15?>
C!\LL rill',,!
IF (t'iL J\f:;. [·T. Ii j Ct\U i<rJus~i(ISTl\·rHfli~1FLr)

T :::{,fj~~}

IF' f :r i,. t\ e-; ~ L. C ~! :) C ,1\ I L i> r~: t '.: . .1 1 ~J? }
(:/\L.IIC\(·;()T
1F~ , {.r L1\ C; Q r~ C ~ U) C(; LL. >~ I Gt-: t:: P:
C[,L.t.. ~ If (J.~: r J. ~~,i ::C/\L.L (-~F (l.. (~C)
b.i f~ f< ':::' ;:,: ;' ~., ~< +.]

)\ VJ Ph, :.~~. ': /\ V, fj (~~::i F. i:' ~ XV,!f·'~ 1-()
C/\ ('It; fi~.,,;;':j<~

CI\L,.! CI(){l;;~;

(f\LL CyC}[j}%v;

'(j,{ (~(,~,. + '; 01"'?)

I ~ ',: 'r /" ::. /\ ':'.J C',: \" J \:'; F' ;.: /\ t) r~, ~,1 :; ~< ;
1f·,,' ~ ./ !. (T i'<E 'I ~''';T~''<rL.C,) <J F'C:: v j-:1Ti-?r:t..C'} C t t.t C;-,::'T~F <ft.)

c: I\L,:~ (;t.; T:'·';
C/\~.~ C-rOrlt'i',.j
J i\i! C'. ';,~.: (:-> T t\ (J<. { ?< :'::, ~)·f 1-- 1. }

524

32599

_. ,..~ .
.:.. ,- \ I

C;\LL C'{C;:(::.t<))
CO;\jT T;.!t.)
CJ\ i..-~ L. I'.', i ,,':,! -; '~ j.-\ I ;

C/\ L_t.. j .. \;-') i,} :,:' ;"

COi\~TTr:

r F- (\,' ;':- i_ j\ C, ;c,:. C ,;, lJ :f CP. ~..,L. L~:r C[r;: F~

C!\LL CiLj-y'r-\ ~~

IF(~~r-;~ .. AGv~0Q{·J) CfLL Cf;~R(2)

CG1\]~l' I f'<L)F

C/\ L L. C:'I-;~ L., F..-
Ci\U
Cl.LL.

-..

J i;

c FOnITEf\'1
Ih5.1.

\,tJ; ~ i<.;::: I~",i j i<.~ ..­
C;\LJ,_ Tnnl<
If: (j'.·:F~ 1,.. ,l\ (".; ,; f~. (~, ~ l) :; C/. l_. ~_ [: I G[r-.:~ F!.
COr'lT i f\iU;-
Ci'd... L wn i

COf\!T '; fil

CPI!-i 1(::; .'.

C/\ LL. .l. ;)l, ' .. ~{ ~) j i :':;: ~}

IF" (i"~FL./\()~, :j Ui C _.~. i,R) I c.)~::r,:;~

525

, -·-r'··--,~

CO;!TTt.
C;\L. L TU
I F (t·r L !\ (; <' j\j L • I':) C" LL V PUS Ii (I S TMi oj r DF LG)

C/\~Ml ritjt·1
IF (!'I I. /\C,. Nt':: .. (I) C;\LL V i) I.) ':)l : (1ST 1~,r:;H'tJi'1FLG)

C-Oj';-r I !-:ljF
COf.ilTf!Ur:­
CfllL J,;r:nN

C F(;!?f.~;:)EXf>

32.594

C FLAG
1 "', t-: Ci
~ {} ...J ~.'

32509

C Uf.:GUG
IfJo(i

elll.t. 0-1C/ILL{:1,1279,S:)2594)
CO[;T Tf'iU:::-
IF (i'r:Li\C) p 32593,
CAU: TcH (j Ih:)
I [in;:; (fJ ~))
IF (\'-:;::' L./\ G i~ [' CJ 9 U) C f\ L.. L_ F:",n P. { 5; 11 ~)2)
C:Al_L ~~CALL(~1279,~32592}

cor'1T J l,qJF
I[nF~':: «(q.P")}

IF(~FLAG.EQ.O)CALLERR(iJ152)

C/ILL TCH(lH:.:)
1[1;1(:::;; (67)
rF (Pi' F' I. 1\ (; • E. Q • U) -.: l L L F r" r~ (S 11 5?)
C/\L.. L. j\,:C.E\LL (S1127'91 $32591)
CONTII';C)F
I [f\;::';:: (t)F~)

IF((\;r:LI\c;.[G.OlCf\LL nm(~~1152i

COi\n HillE
Ci\LL p';FnN

COf\iT 1 t'~{)r:~

CALL ~CALL(S1666/$3259U)

CONi l' j·iUF.
IF(H:L/\G), ~:5c:53St

c 1\ L L ~:: C/j, l L { '}, 1. 6 7 ~5 i :;:. 3 ? 5 (38)
COi\j-r or i'll.lF~

CCi'il I f·:UE
Cf\LL j/ii\Ti\i

COr!T Tf1lJ[
CALL TST(5,5HDEGUG)
IF(i'rLf\G) ~:::\2:'it~7p

C/\i....L. TST{29;'21~or\j)

!F(~"rl.t,(,) ; 325.f',6i
D8Gf'LG::1
GO T C 3?5e,:')

526

C L.IST
167:') cor!T-;-rilJ::

c/\~1 T ~~, T (i l ;) 1.;·1 1L. T~.; -(J
I ::: (;"< r~' ! . /\ ()) ?j ~~ ~;.') ~l

."~ ;.....
'" C. I

C/\ L. L T ~:) T (q. i"' iI·1··i C()n[~)
I r~" (f,': {-- L;\ c j ;1 3 :;,~: ~.) (:, l J ;:

C()i'JTTf';\
C/\L_I _

32~;,76

~)~?~)TI
32579
32561

TF"{f"f,"j __ c) lj~2:-)7d}

L~;T :~;;-,~ c:: n
L~:;TC~(,LI:~()

CO T .:)?:577
COf',j'"r- ~~')"·jl,JC:-:
~/i C~'l_ J\ (';::: 1
I ;~~ { ~.;: r ~ _!\ C) fJ 2') 2 ~.~j 7 t) v

L:'~ c::::

COr,JT~rr

C()j"lT J r-,; uF~

32~)o3

Ef\lU

COi\!T'i
Cr,LL [i!l-iTI\]

527

LANGUAGE STATEMENTS

EXAMPLE TEST (name of element on unit D)
LIST SOURCE
INTEGER PART,COST
DATA /PART,COST/'PART' ,'COST'/

C
C
C MAKE ASSOCIATIONS
C

MAKE COST*'HOUSE'=O
MAKE PART*'HOUSE'='WALL1'
MAKE PART*'HOUSE'='WALL2'
MAKE PART*'HOUSE'='WALL3'
MAKE PART*'HOUSE'='WALL4'
MAKE PART*'HOUSE'='ROOF'
MAKE PART*'HOUSE'='FLOOR'
MAKE COST*'WALL1'=200
MAKE COST*'WALL2'=300
MAKE COST*'WALL3'=200
MAKE COST*'WALL4'=300

MAKE COST*'ROOF'=295
MAKE COST*'ELQPR'=300
MAKE PART*'WALL1'='WINDOW'
MAKE PART*'WALL1'='WINDOW'
MAKE PART*'WALL1'='WINDOW'
MAKE COST*'WINDOW'=50
MAKE PART*'WALL2'='DOOR'
MAKE COST*'DOOR'=75

MAKE PART*'WALL3'='FIRPL'
MAKE COST * 'FIRPL' = 200

C
C
C CALL COSTS FOR ANY ITEM IN HOUSE.

CALL GTCOST('HOUSE')
PRINT 333,ICOST
CALL GTCOST('WrNDOW')
PRINT ccc,ICOST

333 FORMAT(' COST=' ,16)
C
C BREAK TREE
C

BREAK COST*?=?
BREAK PART*?=?
STOP

C
C---------------------------------------
C SUBROUTINE FOR COMPUTING COST OF ITEMS
C

SUBROUTINE GTCOST(ITEM)
INTEGER ITEM
LOCAL X
LOCAL Y
LOCAL Z
ICOST=O
FOR EACH COST*ITEM=X DO 100

528

100

300

500
400
200

ICOST=ICOST+X
CONTINUE
FOR EACH PART*ITEM=Y DO 200
FOR EACH COST*Y=X DO 300
ICOST-ICOST+X
CONTINUE
FOR EACH PART*Y=Z DO 400
FOR EACH COST*Z=X DO 500
ICOST=ICOST+X
CONTINUE
CONTINUE
CONTINUE
RETURN
END

529

APPENDIX A

UTAH TREE-META CONTROL CARDS

@A RUN ARCHIT,496802,2,98,,12 SHERIAN U **ARPA** TRMETA 'EXAMPLE'
@ DPR
@ HDG GENERATE 'EXAMPLE' COMPILER
@ ASG A=$CSC3$
@ ASG C=$CSC1$
~. ASG D
@ XQT CUR

rN A
IN C
TRW A
TRW C

A XQT TRMETA
*
COMPILER SPECIFICATIONS
(PRODUCES A COMPILER ON UNIT D WITH THE NAME AS SPECIFIED:
IN THIS CASE, 'EXAMPL'.

*
@ XQT CUR

TRW D
IN D

TRW D
@IA FOR,* EXAMPL,EXAMPL
@ XQT EXAMPL

*
LANGUAGE STATEMENTS
PUTS OUTPUT OF COMPILER ON UNIT D WITH NAME SpECIFIED:
IN THIS CASE, 'TEST'.)
*

@ XQT CUR
TRW D
IN D·
TRW D

@IA FOR,* TEST,TEST

APPENDIX B

RADC TREE-META

Several of the special characters used in the Tree-Meta

metalanguage used at RADC differ from those used at Utah and/or

as used in this paper. The "@" replaces the "?", the H+"

replaces the H:H, and the "t" replaces the "!::'''. The new IB1'1

keypunch referred to as the I'GE keypunch" should be used to punch

all Tree Meta programs for ease of punching and reading.

At present the RADC version of Tree Meta is available in card

form only as a set of binary element decks. ~his set- of ~ecks

includes themain program and all supporting subroutines. To

generate a compiler using Tree-Meta, the following deck arrangement

is suggested:

$
$

$
$
$

$
$
$
***EOF

IDENT (regular format)
OPTION FORTRAN

~REE-META BINARX DECKS

EXECUTE DUMP
LIMI~S 99,40000,0,10000
TAPE 03,A1R"XXXXX,,'NAME'03

tOMPILER SPECIFICATIONS

FORTRAN LSTOU,COMDK
TAPE S*,A1D"YYYYY,,'NAME'03
ENDJOB

where XXXXX and YYYYY are five-digit magnetic tape numbers and

',NAME I is programmer's identification.

To execute the generated compiler, the deck arrangement would

be exactly the same as above with a binary deck of the generated

compiler replacing the binary deck of the main program of Tree-Meta

(the new compiler uses the same support routines as Tree-Meta)

and the new language statements replacing the compiler specifications

The fo11owlng list is a 0011801 rnlmbelrs printed

by the Tree-Meta system. An error nunue tbe system

when an error occurs while process

an error number is provided in the ~

the following llst is a reference Trom

[he amp lSi spec flcations, and

··ME 0 per T Cb ~onsp Therefore,

~ber to the Tree-

Meta rule name which was processIng the

when the error occurred. HopEd:u.Lly, i[;(<.: ause of

the error in question can be determIned ,rnp6 J ;:9 the meta.language

statement with the requirements of the 11 e VililCh clnted the erroy.

ERR - refers tD

1" TRMETA
2. TRMETA
3. RULE
5. RULE
6. RULE
7. EXP
8. EXP
9. EXP

10. NOBACK
11, NOBACK
12. NTEST
13. NTEST
14. NTEST
15" NTEST
16. NTEST
19. STEST
20. STEST
21. STEST
23. STEST
24. STEST
25. STEST
26. STEST
27. OUTRUL
29. OUTR
30. OUTR

36,.
39
40
41,
42,
43
44,
50.

98.
99~

191,
192,

ITEMS
I TELl/[
ITEM
IT.EM
ITEM
OUTT
OUTT
OUTT
GENU
GENU
GENU
SIZE
GENP2
CO.MM
COMM
SIZ
SIZ
CLOSEPAREN
CLOSEPAREN
CLOSEPAREN
ERRORl
E·. '

STEST
STEST

The following is a collection of error codes generated by the

Tree-Meta support sUbroutines.

CERR - refers to compiler error

SERR - refers to system error

CERR(lO) OPPS ••. FAILURE OF STEST AND NO ERROR PATH SPECIFIED

SERR(113) REFERENCE TO KSTACK IS LESS T~N 0

SERR(13) REFERENCE TO KSTACK IS GREATER THAN MAXIMUM DIMENSIONS

SERR(18) REFERENCE TO MSTACK IS LESS THAN 0 (GENERATED EITHER THROUGH
AN ATTEMPT TO POP MSTACK OR THROUGH AN MONITOR RETURN TO
ITEM ON MSTACK)

SERR(12) REFERENCE TO NSTACK IS GREATER THAN MAXIMUM DIMENSIONS

CERR(2) THE REFERENCE TO TREE IN NSTACK DOES NOT FIND A POINTER

TREER - REFERENCE TO TREE POINTS BEYOND BOTTOM OF NSTACK (OUTREE)
SSERR - ATTEMPT TO OUTPUT A LITERAL THAT STARTS LESS THAN 1, OR

ENDS GREATER THAN 120 (SSERR)
NSPERR - PREMATURE END OF FILE BEING CURRED IN (OCUROF)

APPENDIX D: TREE-META SPECIFICATIONS

TRMETA= (" • META') .ID?l?SIZE :BEGIN [2) ",CON'J.~INUE"!"IDlst=2".ID?1? "MT [0])
(LIST/,EMPTY) :SETUP[lJ * $(RULE::I, !"L8S""LSSAVE")

".END lI ?2E :ENDN [0] *

SIZE == '(SIZ $(', SIZ :DO[2J) ') ?50E / oEMPTY:SIZDF[02;

SIZ == .CHR '= ?54E .NUM ?55E :8128[2];

RULE = .ID
('= EXP ?3E("&&" :USERID[1j/ '& :KPOPK[lJ/.EMPTY) :OUTPT[2]/

, / "=>" ?3E GENI :OUTPT[2j
OUTRUL :OUTPT[2]) ?5E " ?6E ;

EXP = "<-" SUBACK ?7E
SUBEXP (' / EXP

('/ EXP '? 8 E ~ BALTER [2) / • EMPTY : BALTER [1] /
?9E :ALTER (2) /' EMPTY) ;

SUBACK = NTEST (SUBACK :DO[2J / EMPTY) /
STEST (SUBACK :CONCAT(2) ,EMPTY),

SUBEXP = (NTEST / STEST) (NOBACK :CONCAT[2] / " EMPTY);

NOBACK = (NTEST / STEST ('? ,NUM ?lOE :LOAD[lJ (.ID / '? ;ZRO[O]) ?llE
:ERCOD[3] / ,EMPTY :ER[lJ)
(NOBACK :DO[2] / .EMPTY;

NTEST = ': .ID ?12E :NDLB[lj /
! [(.NUM '] ?14E :MKNODE [lJ I

GENP '] ? 5 2E (\ 3 EMP'ry : MT (0 J : DO [2])
'< GENP '> ?53E ('b. /.EMPTY :OUTCR[OJ :DO[2])
'* :GO [0] /

LIST /
"=>" STEST ?15E :SCAN[lj /

COMM:

) /
:TTY[l] /

LIST :::::: ".LIST" ("SOURCE"
/"CODE"
/"OFF "
/.EMPTY

l "LSTSRC='l" ! "LSTCOD=O"
l"LSTSRC=O" !"LSTCOD=l"
J "LSTSRC=O" ! "LSTCOD=O"
! "LSTSRC""l" ! "LSTCOD=l")

GENP == GENPl / .EMPTY :MT[OJ;

GENPl == GENP2 (GENPI :DO[2] / ,EMPTY);

GENP2 = ,* ('S .NUM ?51E :PA:KOUT[1] I ,EMPTY :ZRO[O] :PAROUT[l])
('L :OL / 'c :OC / 'N :ON / .EMPTY :OS) [0] :NOPT[2]/ GENU;

COMM == ".EMPTY" : SET [0] /
'1 (.SR :IMED[l] / '(ITST?52E') :IMED[1])?53E ;

ITST = .SR/'\:ICR[O]', :ITB[Ojl "+.CHR / "#l":ILBl[O] /

"#2":ILB2[OI/ "#3":ILB3[0]/
, $. ID : IN [l]) (ITST : DO [2] / . EMPTY : MT [0] : DO [2])

STEST= ' .. ID?19E ((+' ((I) :MT [0] /INSIDEPAR:LOAD [1] ') ?191E) ?192E) : CALL [:
/;EMPTY:PRIM[l]),

.ID :CALL[l]/
.SR :STST[l] /
'(EXP ?20E I) ?21E /

'+ STEST ?25E :INS[l] /
" +.CHR :CTST[l]/

(.NUM'$?23E/'$:ZRO[O]) (.NUM/.EMPTY
" "STEST

STEST

:IFIN[O]) STEST ?24E :ARB[3] I

?26E :MNTST[l] /
?26E :NTST[l];

INSIDEPAR = ! "CALL IDSET" CLOSEPAREN ! "CALL IDGET" ;

CLOSEPAREN = => (.COL(72) ERROR1/ --')/' (CLOSEPAREN ?lOE ') ?llE
CLOSEPAREN ?12E) ;

ERROR1= ! ('''PRINT "#l/#l,"FORMAT(' NESTING OF PARENTHESES IS WRONG')"\)
! "CALL RESET" => I; $ (RULE *) ".END" ?99E ! "CALL STPMTA";

OUTRUL = '[OUTR ?27E (OUTRUL :ALTER[2] / . EMPTY) :OSET[l];

OUTR = OUTEST "=>" ?29E OUTEXP ?30E :CONCAT[2]i

OUTEST = (('] : MT / "-]" : ONE / "-, -]" : TWO / "-, ... , -]" : THRE) [0] /
ITEMS ']) :CNTCK[l]i

ITEMS = ITEM (I, ITEMS ?32E :ITMSTR[2] / .EMPTY :LITEM[l]) ;

ITEM = '- :MT[O] /
.ID '[?33E OUTEST ?34E :RITEM[2]/
NSIMPl :NITEM[l] /
I • • ID ?35E :FITEM[l] /
.SR :TTST[l] /
"+.CHR :CHTST[l] /
1# .NUM ?37E :GNITEM[l] i

REST = OUTT (REST :OER[2]/ • EMPTY) / GEN (REST :DO[2]/ .EMPTY) i

OUTT = .ID '[?39E ARGLST '] ?40E :OUTCLL[2] / I{ OUTEXP ') ?41E /
N8IMPl (': ('S :08 / 'L :OL / IN :ON/ IC :OC) [0] :NOPT[2] /

.EMPTY :DOIT[l])i

ARGL8T = ARGMNT :ARG[l] (', ARGLST :DO[2] / .EMPTY) / .EMPTY :MT[O] i

j, j r

2. ~1 / ~ E~/lPT'(:: L~Cl' ;/\ .. 1 J)

Ci L-:; " ::: «~ l)T/ C:)

1-' ,- ~ i 1. --
'..)~~,; ;~; - I

'1 ~,- ",:- ',.1 :..

, "
/1 'i ,

.;:- ,

DlJT ...~, ($ \ :. OlJTCF~ / ~~. ~ ·'):..JT
tI C)l'~ : ()t)T::.;f<L ; '1 /

'I ~. + f C f·in ; OlJ'r j iC 'i /
:.'.\+ \'J:J. ~UI-:J\.'Jt-<~<;· / :1

:-~ .~~ ;; ~.~ . :;. c- VJi·1\:'lr·~ j' 0 j /

)('J) , n "i /

. 'j .:_~ : ["/1 .'\)< V'1 !-~: ~,r nl j

j I l,l J r

":' r"\ ,- ~
.;< ..: (; <3 \.~ '__

::> y \'":. (:-)., \ ,'-

f rrc.:\LL L

; (.: /\ L.. L_ I t\: I -:- ~ \ :: t(\,,):: ~< :::: CJ !" \ ... ~ ~1 ~.< ~\! f\ V~~' 0 T.I \

;.; "\ ~. '\:':: ~;'.: .\:_ L... !'..1C: /\ .. ~ r: n' 3. ~) \
~; ~jSTOP E~IDCMP~\;

'81'd TE 1< r j :: ;. .' n Cf\ L. L ~;' n \, ;!~ .~ : ~ C/\ ~_ ' ~:.: T I~~):';' \
l. .. " - I => ,. He rLL_ ';,i\ \1[;\ :!: _1 <: ,\ ,_ f"\':;Tf?l-l\ nor I F (HrL~\G) ? ~ j;(l-H \

*2 l.11;) ltCO:--rr 1 jC~H\ f

::>

/\L-l:' ;._iL .,.",~. ~;F· ";-r J] => ;~:··I ~:?

L (;(" :C;\Tr - ~ •• -j" -1 ==>i\

L/\G'}rl:1 \

/\ (:;) {:..:~

[::\« (1ITc [.;[. - f :-;CTr J] J ::> /;:
[.......1 :::>),l;,1 ffl'!r::(Lf.\G'IIE:G~O)C/,,:__ L~ fJTC;t:.pRn\p

CO;<C:\TC-·;--1 => *1 i>1T.F(Iv11:·~Lwj\C';) ,:x7J ';}.J. ~ l \.

~j;. 2. ;.13.. » ,..! C()f\J :n \'

_.~,

--/ ? I1CJ\LL. i/!C/\LL (~;;)~i·i' 1 ~ ~,j,.,; 'Gyti! 1 ~) \in, nCONT HIUEll\
r -- 1 - J ::"> p ;'1 Ch H *·1: ~::) ~i': 2 \ ~

Zj'~ / :::> IJ(1rl;

cJ«"',:'J)L ~'. 1 "~.'! ;..:j:'()[' 1.] => * 1 y tX I t:J?f~:::'J1*~~_ ,',.:'1 .I\G 0 E.n (l o)- C!\l_L EF~R { n) l:(\

,,'. f - ~ - iI .._]. =') ~!~ 'j :J:1 I [r<h'.:::!r:-f~2\ :"1 r: I F- (h/1F·-l_!\ G ~ I:~ Ci Q G) Crd~-L EJ<H ((T: 1::i::~: 3 :'N

/\1<[,.[' /' hoe j) If: II'I[:1 ~ ~. 1 ::> ;:;.1, lie,ONT I:')Ut:;·<\ ,;.:3);.1 I r= (l-1FL Ac;) 9 dHi 1 \
; l"(f/jFL~f\(::..: j t!\

i ...; 1 •• J r_'i ::>r n C!\l. L. :) II \j j(\

tl'.1. ~ neOj·IT Ji"·JL::·-'~J.I\ *3
;' ;'.: :'isT/\ C~~ (f.!::~)r}) ~r.!l~:~ T !~.C i< (f-.1~;!--J) ':~ j :;~\

,'. :.: TF ([·.jl~; T/\CI< () -t[:1-:L~t~) 'y} ? :;~~.l ;.2\
; ;., I F { i<FL/\c:) 7 ; ;1<; J. \
I C I r:- (i'/;S or I-\(.~i<'".·, (~:~y)) ~ Gt~ fJ U * j. :",1) !\/il::-L~i\ G::: 1 'LX \

t'; 2 .., :c. ; 1\ {j:~ ,r::' \
i:; ~) ~, 1:. 1 :; ~r lJ;)Li ;:: i'.. ~ f") 0 r; (I ~:; T. l) i) D) i.'; \

, ;;CII LL I~S H \ i

J f-.r: / --/ :'.:)2/(;7r; ;

Fl i ! 'J => [\)O TTYn\;

...

1>,.

: 'r i c, T f~ [-;, - '1 ;~ 1)::! Cf'il"::: I ct·1T +:L n\ ? }~:}< T~<:::~<T)(--1 n\

LITFi'1 r -j ::> *.1 ~!1:r(:r:T:::r

nIT~;'r"r->:::> .,HC/\U F<Jl (~;;n,;'J:ji);,,()'i 1')\ *? ,rJC/\LL PI2n\ tJl,I!COf';T!r~UE,,

OL.l'r _.; •• J => *1, ~\II"'·lr'iFLt,C.EC.,U) C/'.1..:'., C[f\f~(l)n\ *::::;

o if- c: LL [-; .., I :: > ,n C rd .L () TC l.. L 1 (T n:d ~ iJ ~ l \ ~'2 ~ n C;, L LOTeLL? (S 1\ !-1 2 I 1 \
}:,.;> ,)..(COI"J-l';'t";l)F:')'{ \

) ;.1 \ ,)', I C ::: I C1\1 T+1 n \ ;

CfL.\ c" E r - jJ - '1 := > ~ 11 I 1'T- :: (~ F T (n :;;~ 1 ~ S v) \
i' l-~ If' (j -,;\ J[) (:r [VI [,. r·-:. or i': F LG)~, 'J F) T f -: r:-L·(;) C/\ LLeERn (:s) t~ \ ::4~ ;'2;

j",:()I)'"t f.-g-] ::> ~f.l vi TST:I,f):-.:/\f·Jn{ It'.!;F~rj\; f-';i~;;<)rr\

n IF U,i'd:;(Iii(: ,:,'I"ld:' C) ,.CCoF'T!<FLCl CALL C[Rf~(q)u\ *2i

sc .. L -:; => !II ;T1Cor:-rTH!L)i\ ::1 gr~TF; \<;::LJ,C) i' ~!·f ri?\
fr,t;cCr=f',jCCP+-,r~'\fllCOTO 1) 1\ ,:;,.~'; CCi'-·lTTf'!UE.i"X\t

\..1 I [,":1 -/ vECM.L TCI·I(lii1,,\:J.~C~)\',

,"C ::> Cf\ ' I OL1~rs "V,) .I ~ l_ '- ,

C) j"'~ ; - ;;. t'
"

l~ /\ LL OljTr-i i., .
()~ / ::) r): C /', I I OUT i (

,
1..-'- I

(J. r I ~... i' t',

()C => t I.r~l..D (C) i/ 6! T ~~:.;~ri.) :~F'i.rJ (~~)n J) ~'.f\

c Xi. C;\ L L Cf c~ { (J~) T t.: F; L; '/ L. l .i; -.: ~~:»)) n \ ?

Ci\;!:·,L I ...· j => y 11 C/\LL C[l\j <

~-J. l nC/\ L I

OUT c i~ / ::.> "t: CII LL (' f:> LFTl \

() U:-i 1\ P / ::~ > u tJ CJ\ L~ L T /\ [. ~ -: \ ;,

f ~ ,.- :::.> ::::. 1 ~) \ ;

cr,~ 1 T F" -,. ~~ ="> ~ lJ. I F (j')-,J> t [\J~~ T h C}< { ~< T >::);. "('1Ft c;) ~ I\Jf~ ~ GF-'I'~Ft_G) r,t;F"Li\ G::: 0 r::\
p X-{ If" (r" F: L /\ (; j) E.. C ~].) C >;. 2. ~ P. f"1 D (f·; s·r;\ CK (t< 1'" ~<) J /\ [\ r~ (..~ sv ;.]';' \ ~

~ fJ,C l\L.L
v !:C/\Ll.., 1'·/1f-)t)~,)l·1 (;-<~.~p) ~~\

f t; C/\ L L. r.: r" ': t.J ~,~ ~ "{ t'; CCP) n \ :.~.: 1.
~ ~~.~ l' CCr):: r;") f") 0 f) (I ~..~~ -r C) p [)) 1 \

~ :-.r KSP::: t'v'~ p (~ f) (TSTl 0; i-_l.~')) J..~ \

; td< T :: r< r" c r" (T ~-; T UFJ r;) i-I \

~ .. " / ~ ;-;Cf\LL i'f)! j~~;H (i' T) },\
, ~; C f\ L. L_ I':'P :]~,: : (~)) ! \

~ uCtLL r-i:Pt)~;I'-'J {r'lCCF» 1":\ :),,1

\

{) ;.-: \ 2

\ (.

\ [i

'"

,', I
·1 ~)

~... (-

ii f.--\L

[~C;lr;9--1 =>
7.~..XSF; i' 1:1

\.- ..1

J "',".l

'.:. ~:;::::.'.l

'tt',COf"
\

,\. Ii! J,: j

\

1 :<SPn \
)4:~ j." ~'; r.. ~ :~ :-::. c;;

tl"'Cn:'/i-'1CJr·! /i'/;:1<r i</>·-:s'-rrc:<{:;OC) {,f'/1XSf)r;'jt,' n\

\

: l·:C C,>": ~/l 0 ["'.; / r·'! ~:; '"{ Ti:-:,;' ~_~ \{ ~,.,. -f" {:' E; 0 C.) ;, L. y S:'.; ~. r.r \
f ~{ I ~:,~S:,,::';~>CO::'\~;

IncrLL JDSET):!\

t tX C/~ L.L
(~f -:

). ~~:. "-;,.) ~:,~ \ .. ?

J(;(-,-.. ,; ~J 27 .,"J _..... -'

" - .-', ,r L \... ~~-:_

I' C:-;h .,J

/ =>
;" / ::.>

iLi~?1 / ::>
IT / :-.:>
Ie, / :::>

p.T"' ~
Q I 1, i

QEj\/lPT\/ ;

j:.- v ~

o !,..... 'v

~:\..JT('·:TL r;Ol --; -]] => I.l t~=;·..~r: TY
b.1r }Ll"51[-iJ::> ~L:~t·':r>TY

Y3~r TL L~~"[j] =>
;':":)jr 'fL L:;3[J ~j :.:>

••. (1.

BIBLIOGRAPHY

1 (BOOK1) Erwin Book, "The LISP Version of the Meta Compiler,"

TECH MEMO TM-2710/330/00, System Development Corporation, 2500

Colorado Avenue, Santa Monica, California 90406, 2 November 1965.

2 (BOOK2) Erwin Book and D.V. Schorre, "A Simple Compiler

Showing Features of Extended META," SP-2822, System Development

Corporation, 2500 Colorado Avenue, Santa Monica, California 90406,

11 April 1967.

3 (GLENNIE1) A.E. Glennie, "On the Syntax Machine and the

Construction of a Universal Computer," Technical Report Number 2,

AD 240-512, Computation Center, Carnegie Institute of Technology, 1960.

4 (KIRKLEY1) Charles R. Kirkley and Johns F. Rulifson, "The LOT

System of Syntax Directed Compiling," Stanford Research Institute

Internal Report ISR 187531-139, 1966.

5 (LEDLEY1) Robert Ledley and J.B. Wilson, "Automatic Programming

Language Translation through Syntactical Analysis," Communications

of the Association for Computing Machinery, Vol. 5, No.3 pp. 145-55,

March, 1962.

6 (METCALFE1) Howard Metcalfe, "A Parameterized Compiler Based

on Mechanical L±l.guistics," Planning Research Corporation R-311,

March 1, 1963, also in Annual Review in Automatic Programming,

Vol. 4, 125-65.

7 (NAUR1) Peter Naur et al., "Report on the Algorithmic Language

ALGOL 60," Communications of the Association for Computing Machinery,

Vol. 3, No.5, pp. 299-384, May, 1960.

8 (OPPENHEIMl) D. Oppenheim and D. Haggerty, "META 5: A Tool

to Manipulate Strings of Data," Proceedings of the 21st National

Conference of the Association for Computing Machinery, 1966.

9 (RUTMANl) Roger Rutman, "LOGIK, A Syntax Directed Compiler for

Computer Bit-Time Simulation," Master Thesis, UCLA, A~gust, 1964.

10 (SCHMIDTl) L.O. Schmidt, "The Status Bit," Special Interest

Group on Programming Languages Working Group 1 News Letter, 1964.

11 (SCHMIDTl) PDP-l

12 (SCHMIDT3) EQGEN

13 (SCHNEIDERl) F.W. Schneider and G.D. Johnson, "A Syntax-Directed

Compiler-Writing Compiler to Generate Efficient Code," Proceedings

of the 19th National Conference of the Association for Computing

Machinery, 1964.

14 (SCHORREl) D.V. Schorre, "A Syntax-Directed SMALGOL for the

1401," Proceedings of the 18th National Conference of the Association

for Computing Machinery, Denver Colorado, 1963.

15 (SCHORRE2) D.V. Schorre, "META II, A Syntax-Directed Compiler

Writing Language," Proceedings of the 19th Nationat Conference of

the Association for Computing Machinery, 1964.

16 Rosen, Saul (ed.), Programming Systems and Languages, McGraw­

Hill Book Company, 1967.

17 Feldman, J. and Gries, D., "Translator Writing Systems," Communi­

cations of the ACM, February, 1968.

___---'U..Lnu;,.c'--']....a.lULi~f~i~e'_'d~ _
Security Cl~ssific.1tion

(13. REPOR"r TITLE

fi THE TREE-META COMPILER-COMPILER SYSTEM: A Meta Compiler
« System for the Univac 1108 and the General Electric 645

4. OESCRIPTl VE NOTES (Typo of report and inclusive dates)

technical report
5. A':J THOR(S} (First name" middlo initial" lsst nome)

C. Stephen Carr, David A. Luther, Sherian Erdmann

RADC-TR-69-83

6D30
ARPA Order No. 829

c. Program Code Number:

Tree Meta is a compiler-compiler system for context-free
languages. Parsing statements of the metalanguage resemble
Backus-Naur Form with embedded tree-building directives.
Unparsing rules include extensive tree-scanning arid code­
generation constructs. Examples in this report are drawn
from algebraic and special-purpose languages. The process
of bootstrapping from a simpler metalanguage is explored
in detail.

This report is based on an earlier one by D. I. Andrews
and J. F. Rulifson of Stanford Research Institute which
described the SDS 940 version of Tree Meta. The Tree Meta
system described in this report was bootstrapped from the
SDS 940 with a minimum of hand coding.

Unclassified
Security Classiiication

Metalanguage

compiler-compiler

parsing

unparsing

code generation

tree building

Unclassified
Security Classification

-------""""'---'(,1=_L_""_~r-K_A__+I L_'N,-K_B_-t-__L_"'"1""K_C_-;~I'
K EV WORDS r-r "I

! ROLE I 'fiT ROLE 'liT ROLE I 'NT

Unclassified
Security Classification

