
PROCEEDINGS

SIXfH HAWAII INTERNATIONAL OONFERENCE

ON SYSTEM SCIENCES

Edited By

Art Lew

Conference Held

January 9, 10, 11, 1973
University of Hawaii

Honolulu, Hawaii

Sponsored By:
Department of Electrical Engineering and
Department of Information and Computer Sciences

University of Hawaii

Supported By:
U.S. Army Research Office, Durham

In Cooperation With:
TIle IerLE Computer Society
The IEEE Control Systems Society
The IEEE Groups on

Circuit 11leory
Systems, i,1an and Cybernetics

The Hawaii Section of IEEE
Simulation Councils, Inc.
Society for Industrial and Applied Mathematics

REPRODUCED BY, NJlI
u.s. Department of Commerce

National Technical Information Service
Springfield, Virginia 22161





META S: A METALANGUAGE FOR COMPILERSt

W. J. Chandler

Computer Science Program
University of Southern California
Los Angeles, California 90007

Abstract

A metalanguage for efficient description of one-pass compilers is presented.
Its input is the conventional form of BNF productions with interlaced actions
and tests. META S differs from other metalanguages by its pre-defined data
structures, arithmetic capability, and symbol table with arbitrary attributes.

I~ INTRODUCTION

During the preceding decade, a succession
of compiler metalanguages have been developed
[1,2,3,4,5,6]. All of these share the feature
that their input is essentially a set of Bakus-Naur
Yon" (BNF) productions with interspersed ac
Hor.s and tests. The power of these METAlan
guages varies considerably. The earliest one,
META 2 [5], only allowed output commands as
an action; while the later ones (META 3 [6],
META 5 [3], META PI [2], TREE META (1],
and META 7 [7]) have a menu of actions which
can be performed on internal data structures.
Some allow full back-up while others have limi
ted or no back- up. Some allow user- defined data
structures, while others have only pre- defined
structures. A general familiarity with metalan
guages is assumed. .

Z. GENERAL ORGANIZA TION

META S is introduced as a metalanguage for
efficient and concise descriptions of one- pass
translations (while multi- pass translations can be
written in META S, this would result in ineffic
ient and artificial descriptions). As in other
META languages, the input to META S is a set
of BNF productions with interlaced actions and
testa. Back-up is not provided because it is unne
cessary for one- pas s translations, and overhead
for back-up is costly when complex data struc
tures are involved.

Pre-defined data structures in META S con
sist of pushdown stacks, global variables, and
a symbol table. There is a main stack (desig
nated by';') which is used for communication be
tween the recognizer and actions in the BNF pro
ductions. There are 9 other stacks (designated

by :(: followed by a digit) which can be used for any
purpose. That is, *1 refers to stack I, ~'2 refers
to stack 2, etc. *0 means the same as *, and re
fers to the main stack. Modifications to a stack
can occur only at its top. However, reference to
interior stack elements is provided by following a
stack designation with an int~g~r enc1oRl'd in par
entheses. That is, 1cl(3) refers to the third ele
Inent of stack 1 (the topmost clc:nc~t in .the z'ero
element). Also, there are.26 global variables
(designated by single letters A through Z) which
can be used for any purpose.

A symbol table is provided which contains
identifiers, strings, and numbers. Each symbol
table entry has three attributes, designated by
digits I, 2, and 3. The.re is no a priori interpre
tation of these attributes; any item which can be
manipulated by META S can be assigned to one of
these attributes. For example, the top element of
a stack can be assigned as the third attribute of a
symbol table entry. The recognizer automatically
inserts identifiers, nUlnbers, strings, etc. in the
symbol table.

3. SYNTAX

The syntax of META S is given by the follow
ing self-description which is a translation from
META S to the META S machine. (See Figures 1
and 2.)

• SYNT AX PROGRAM;
PROGRAM = '. SYNTAX'. ID I;'

.OUT(,'CALL', ~'I, 'DlAG'I,'HALT')
STMT $ STMT '. END' ';' ;

A program consists of the keyword. SYNTAX, fol
lowed by an identifier which is the start symbol of
the ENF prodlldions, followed by one or more
statements, and terminated by the keyword. EKD.-_._---;:-------------------

111lis work was supported hy [he Joint Services Electronic:; Program (lJ. S.
Army, U. S. Navy, and U. S. Air Force) under Grant No. F<1·16?'o-71- C- 00(,7.

101



STMT= .ID. OUT(*) 1=1 EXPI ,., ., , ITEM =. STRING. OUT(, *)/ELEMENT:

A statement is an identifier (which is the name of
a syntactic type), followed by =, followed by an
expression-l (which defines the syntactic type),
and terminated by a semi- colon•.

EXPI = EXPZ • LGEN(*I)
$('/ 1 • OUT(, 'BTl, *1(O»EXPZ) • OUT(*I)

An expression-l is one or more alternatives
(each of which is an expression-2) separated by
slashes.

EXPZ = EXP3 •

An-item is a string or an element.

ELEMENT= I,~,(. DIGITI. TRUE. PUSH('O', *»
('('. NUMBER')'. POp(to',A)
• OUT(, 'ST', *, '(IA')') :
I. TRUE. OUT(, 'ST', *»

An element is a reference to one of the ten stacks,

I. LETTER. OUT(, 'GV', *)

or a reference to one of the 26 global variables.

I. NUMBER. OUT(, *):
An expr'e s sion- 2 is an expre s sion- 3,

IACTION$ ACTION
(EXP3/. TRUE. OUT(, 'SET'»;

or a sequence of one or more actions, possible
followed by an expression-3.

EXP3 = TEST. LGEN(,q). OUT(, IBFI, *1(0»
$(ACTION/TEST. OUT(, 'DIAG'». OUT(*I);

An expre s sion- 3 is a test followed by a sequence
of actions and tests.

TEST. = '(' EXPI I)' I'-STRING. OUT(, 'TEST', *)

A test is an expression-l enclosed in parentheses,
or a literal string.

I. TNAMEO. OUT(, 'EXECI, *)

I. TNAME. OUT(, 'EXEC', ")'('ARGLIST')':

or a test function possibly with an argument list.

ACTION= '$'. LGEN(*I). OUT(*I(O»
TEST. OUT(, 'BT', "II, 'SET')

An action is a test which is repeated until it fails,

I. ANAMEO. OUT(, 'EXEC', *)

or an action function without arguments,

I. ANAME. OUT(, 'EXECI, *) 1(' ARGLIST I)'

or an action function followed by an argument list,

II. OUT'. OUT(, 'EXEC', 'OUT') ,
'(I OUTI $ OUTI ')'. OUT(, 'END LIST')

or a call to the output function followed by a se
quence of elements to be printed,

II. CGEN'. OUT(, 'EXEC', 'CGEN')
III SETITEM ',' ARITHEXP')I
• OUT(, 'END LIST'):

or a call to the arithITletic expre s sion function
followed by suitable arguments.

OUTI = 'I'
An out-l is a slash denoting end of record,

I', ,
or a COITlITla ITleaning to skip to next tab position

lITEM:

or an item to be printed.

ARGLIST= ITEM $ (', 'ITEM). OUT(, 'END LIST'):

An argument list is a sequence of items separated
by COlnn1as.

or an unsigned integer.

SETITEM= '*'(. DIGITI. TRUE. PUSH('O', *)
• OUT(, 'ST', *)

A set item is a reference to one of the ten stacks,

I. LETTER. OUT(, 'GV', *);

or a reference to one of the 26 global variables.

ARITHEXP= TERM $('+ 'TERM. OUT(, '+ ')
1'-' TERM. OUT(, '_ I));

An arithmetic expression is a sequence of terms
separated by additive operators.

TERM= FACTOR $ ('*' FACTOR. OUT(,'*')
1'/' FACTOR. OUT(, 'I'»:

A term is a sequence of factors separated by mul
tiplicative operators.

FACtOR = PRIMARY/'-IPRIMARY. OUT(, 'p- I):

A factor is a prin1ary, possibly preceded by a
unary minus sign.

PRIMARY = ELEMENT/Ie A RITHEX?I)! ;

A prin1ary is an element or an arithn1etic expres
sion enclosed in parentheses.

.END;

Terminates the program.

4. FUNCTIONS

META S contain several built in tests and actions
which operate on interval data structures. Actions
are not pern1itted to modify stack interiors. For
example, the argument of . LGEN cannot be *1(2).
Each of the test functions sets the mode flag ac
cording to its result•

TESTS

.ID Tests input for an identifier. Inserts it into
sy=bol table, and onto main stack.

• NUMBER Tests input for an unsigned integer.
Inserts it into symbol table, and onto main
stack.

• STRING Tests input for a sequence of charac
ters enclosed in quote ITlarks. Inserts it in
to syn1bol table, and onto ITlain stack.

· LETTER Tests input for a letter, and pushes it
onto n1ain stack.

· DIGIT Tests input for a digit, and pushes it onto
main stack.

102



4. Schneider, F. W. and Johnson, G. P., "META 3
A Syntax Directed Compiler Writing Compiler
to Write Efficient Code," Proc. 19th ACM
Nat'l, Con!., 1964.

5. Schorre, D. V., "Meta 2: A Syntax Oriented
Compiler Writing Language, "Proc. 19th
ACMNat'l, ConC, 1964.

6. Tyrrill, A. R., "The Meta 7 Translator Writ
ing System," Report UCLA-ENG-7l22, Uni
versity of California at Los Angeles, School
of Engineering.

FIGURE 1

INSTRUCTIONS OF META S MACHINE

CALL R Recursive branch to item labeled R.

B R Unconditional branch to item labeled R.

BF R Branch to R if mode flag is false.

BT R Branch to R if mode flag is true.

TEST S Determine if string S occurs next in the
input; set mode flag accordingly.

~ETURN Branch to instruction following the, most
recent CALL.

Set mode flag to true.

Halt

If mode flag is true, then perform diag
nosis function and halt, else continue.

Perform function R; an argument list
may follow this instruction.

Literal

FIGURE 2
ARGUMENT LIST COMPONENTS

Reference to j- th element of stack i;
stack i is not altered; j := 0 refers to top
element

Reference to top element of stack i;
stack i is either popped, or an item is
pushed onto it.

Reference to global variable a.

This may be a string, an unsigned inte
ger, or a letter.

One of the arithmetic operators +, -, /,
*, or unary minus. Arithnletic expres-
sions appear in reverse polish notation.

END LIST Last entry in argument .list.

GVa

ST i (j)

EXEC R

SET

HALT

DIAG

operator

ST _

5. REFERENCES

• TRUE This test is always' satisfied.

• CONS (31 , •• ', an) Determine 5 if all of the a l
contain numbers.

• TEMP(a1) Determines if a 1 contains a name
generated by • TGEN.

• EO (a1, ••• , an) Determines if the contents of at
are all identical.

• NE (a1' "., an) Complement of • EO (a1 , "', an)'

• TNAMEO Tests input for name of one of the test
functions without argulTIents (. ID, • NUMBER,
etc.). Pushes name onto main stack.

• TNAME Tests input for name of one of the test
functions with arguments (. CONS, • TEMP,
• EO, • NE). Pushes it onto main stack.

• ANAMEO Tests input for name of one of the ac
tion functions without arguments (. STPRNT,
· TCLR). Pushes it onto main stack.

• ANAME Tests input for name of one of the ac
tion functions with arguments (. LGEN,
• TGEN, . PUSH, . POP, • AGET, . ASET,
• INSERT). Pushes it onto main stack.

ACTIONS

• STPRNT Prints the symbol table.

• LGEN la,) Creates a uniaue "label" name. and
puts 'it into a 1• .

• TGEN (a1) Creates a unique "temporaryil name,
and inserts it onto a 1•

• TCLR Resets the generator used by • TGEN.

• PUSH (a1 , "', an) Takes one element from each
of a 1 through a n_1, and inserts them onto an
(n ~ 2).

• POP (a 1 , ••• , an) Takes n-l elements from a 1
and inserts them into a 2 , a 3 , ••• , an (n ~ 2).

• AGET (a1 , a 2 , a3 ) Obtains the a 2 attribute of a 1
and inserts it into a 3 •

• ASET (a1 , a 2 .. a 3 ) Sets the a 2 attribute of a 1 to the
contents of a 3 • .

• CGEN (a1 , a 2) Evaluate s arithmetic expre 5 sion
a 2 , inserts result into sYlTIbol table and a 1•

• INSER T (a 1 , ••• , an) Inserts into symbol table
and a 1 , the identifier obtained by concatenat
ing contents of a 2 through an (n ~ 2).

1: Carr, S. B. , Luther, D. A., and Erdman, S. ,
"The TREE- META Compiler- Compiler Sys
tem, " RADC- TR- 69- 83, University of Utah,
March 1969.

Z. 0 'Neill, J. T., "Meta Pi- An Interactive On
Line Compiler- Compiler," Proe. AFIPS 1968

.1::1..ff, vol. 33, PP. 201-218.

3. Oppcnhiem, D. K. , "The Meta 5 Langllar:e and
System," 'I'M 2396, System Dcvelop~llent Cor
proation, Santa Mor,ica, Calif. January 1966.

103




