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Introduction 

To deal with the problem of many problem-oriented languages to be 

translated to many machine languages,  three main lines of attack have been 

suggested. 

(1) That the multiplicity of problem-oriented languages be reduced by 

the adoption of a universal-algorithmic language, e.g.,ALGOL.    This 

legislative manner of abolishing the difficulty does not seem to be 

a complete solution:    such languages as have been proposed lack 

universality in varying ways.    For example ALGOL has no provision 

for the processing of strings of symbols.     In addition,   it is not 

at all clear that present ideas of what constitutes a universal 

language will be valid in a future with time-sharing and even per- 

haps  self-organising computers. 

(2) That a common machine-oriented language be devised.    This language 

(UNGOL for short) is thought of as an intermediary language through 

which translation will be made.    Each problem-oriented language is 

to be translated to UNGOL by a translator that can be written in 

UNGOL,     An UNGOL to machine-language  translation completes the 

process. 

(3) That translators be so constructed that they accept the description 

of a source language and are thereby convert.ed into translators  for 

that language.     For each machine,   only one such translator need be 

built. 

This report follows the third approach. 



In order to give a degree of universality to a compiler, two things must 

be done. First, there must be some method of describing the source language; 

and, second, there must be some way of dGs:riväi.j-, the properties of the 

machine for which translation is maie-.  In great measure, the first problem 

was solved bv the introduction by Backus of a notation for describing the 

v 
syntax of ALGOL  . This notation is related to similar notations in linguis- 

tics (phrase-structure prammar in aubwtitution form  } and jn logic 
Q / 

(productions  ).  ihe second problem is one of considerable difficulty. 

Although it is possible to describe the properties of a computing machine, 

as is done in any reference manual, such descriptions are not in a form which 

is simple to manipulate mechaniccilly.  This report proposes an alternative. - 

that the description of the source language should not be made independently 

of the target language but should exploit any properties of the target language 

that are useful.  For example, if the machine has the ability in one instruc- 

tion to add the absolute value of a number, the source language should be 

described with that operation as one of its primitives, rather than the two 

primitives of addition and taking the absolute value. 

This report is divided into four sections.  The first section proposes 

a mechanism for scanning a linear text, and performing a syntactic analysis. 

A pseudo-machine, the Syntax Machine is described, whose programs may be con- 

sidered to define the language of the text.  The output from the Syntax Machine 

is a string whose evaluation leads to a (partial) translation of the source 

text. 

1/ J.W. Backus et. al.''Report on the Algorithmic Language ALGOL 6o"; 
Communications ACM 3 P-299, May I960. 

2/ N. Chomsky "Three Models for the Description of Language.'' 
Tr. IRE, IT-2; No. 3. p.113; Sept, 1956. 

2/ M. Davis   Computability and Unsolvability. Ch.6; McGraw-Hill, 
New York; 1958. 



The second part of the report discusses, mainly by exaiaples, the 

application of the Syntax Machine to translation for a particular target- 

machine language, and shows how the syntax description may be written to 

exploit the special features of the target machine. 

The third sections considers the role of Declarations in the source 

language and the mechanisms required to effect them in the translation process. 

The fourth section deals with a supplementary process of assembly which is 

required to evaluate the strings produced by the Syntax Machine, 

1.2. A Notation for Syntax 

The notation to be presented is similar to that of Backus, but with an 

important difference» Whereas the notation of Backus enables texts conform- 

able with the rules of syntax to be derived by substitutions, the present 

notation is used to express a decision procedure that tests whether an example 

of text conforms to the rules. 

The decision procedure tests the legality of a string by applying one 

of three types of tests to the string. Let us denote syntactic variables 

by enclosing the name of the variable within the brackets < > , and denote 

syntactic constants ( i.e.., characters of the alphabet) by themselves. The 

three types of test and their notation are: 

(l) Is the string a value of a syntactic variable which is the concatenate 

of other syntactic variables or constants? 

This is expressed by the formula 

<A> ;:= < B > < C > < D > ,., < X > 

where juxtaposition in the formula signifies concatenation in the 

string tested, and the sign s; = means that the variable on the left 

is defined by the expression on the right. 



(2)    Is the string a value of a syntactic variable defined as being an 

alternative of several variables? 

< A > :J= < B > < G > < X> < D > 

where the connective!denotes that the variables are alternatives, 

in the sense that the string is a    value of < A > if it is a value 

of < B >,  or of < C > and so on. 

(3)    Is the string a concatenate of several   strings with the last string 

repeated an indefinite number of times  (perhaps none)? 

This is expressed by the formula 

<A>;s=   <B>   <C>   <D>    ...        r<X>) 

where     (      1   denotes iterated concatenation, and the definiens has at 

least one  term before the iterated concatenation. 

In the foregoing it has been tacitly assumed that tests implied by the right- 

hand  sides of these expressions had been taken in the order of writing,     If 

this is now adopted as a convention of the fonnalism,  then the formulae 

express algorithms for testing whether strings are values of  syntartic varia- 

bles. 

The formulae now have the corresponding interpretations. 

(1) The string is an < A > if a head string is found to be a < B > and 

the head of the  remaining part of the  string is a < C >,   and so on. 

(2) The string is an < A > if it is a < B >,  or if not that,   then a < C >, 

and so on. 

(3) The interpretation is similar to that of the first type, but with 

the last component iterated. 



1.3 Syntax Notation as Program. The Syntax Machine 

In this section a pseudo-machine, called the Syntax Machine, will be 

defined that uses the definitions of the previous sections as programs to 

decide whether strings are values of syntactic variables. 

Consider a machine with an inpuc tape on each consecutive position of 

which is inscribed one character of a string to be analyzed.  The machine 

obeys program steps of the form F,AT,AF where F specifies the action to 

be taken, and AT,AF specify the addresses of the next program steps. For 

each character of the alphabet and for some important subclasses there is a 

machine instruction of a type called a ''Comparator.'1 A Comparator instruc- 

tion, say for the character ''X'', will read the character presently under 

the reading head on the input tape.  If the character is ""x",  then the 

input tape is moved by one character position and the next instruction of 

the program taken from address AT. If the character is not ''x",  then the 

tape is not moved and the next instruction is taken from address AF. Where 

the Comparator is for a subset of the characters the action is similar; if 

the character under the reading head belongs to the subset, the tape is moved 

and the next instruction is taken from location AT. 

In programming for this machine, another type of program step may be used, 

the Recognizer: it is a subroutine composed out of Comparators and Recogni- 

zers. To call a subroutine a special function of the machine, denoted here by 

S*p AT, AF, is used.  Its action is to copy the present position of the input 

tape on to the current level of the control push-down list, together with the 

addresses AT, AF, in parallel lists. Then the level of control is increased 

by 1 and the next program step taken from location S. Two more special 

instructions provide for exits from subroutines, in case of failure or success 

of the decision process.  These functions, called ''False"' and ''True,'1 

decrease the level of control by 1 and cause the next program step to be taken 



from the AF or AT addresses in the control push-down list.    In the case of 

''False'' the input tape is repositioned to be as it was when the subroutine 

was entered. 

By this means Recognisers can be constructed that act like Comparators, 

but recognize strings of characters. 

With this  apparatus it is  possible to write programs for the syntax 

definitions  of  the previous  section. 

Examples 

3 = 

< A > ss« 

< B > 

< C > ;s = 

< A >    < A > 

<!>;:=    <-L>{<NL>} 

which recognizes the occurrence 
of the  character a or b or c. 

if A is as defined in Ex.1, this 
recognizes the pairs of characters 
aa.ab,ac,ba,bb,bc,ca,cb,cc. 

recognizes x,xy,xyy,xyyy      etc. 

recognizes ALGOL identifiers, if L 
is a recognizer (or comparator) for 
alphabet letters and NL is a recognizer 
for letters and numerals. 

Programs for these examples may be written in the   ''machine''  instruction 

notation as follows; 

Label Function AT AF 

1) A 
SI 
32 
S3 

C(a) 
C(b) 
C(c) 
False 
True 

34 
S4 
34 

31 
32 
S3 

2) B 
35 

A* 
A* 

35 
S4 

S3 
S3 

3) C 
S6 

C(x) 
C(y) 

36 
36 

S3 
34 

4) I 
S7 

L* 
NL* 

37 
37 

S3 
34 

Here C(x') denot es the Comparato r for x. and simil 



In this notation, we can write programs for which there is no representa- 

tion in the algebraic iormalism; this will be convenient on occasion» We 

could define syntax in terms cf programs for the syntax machire:  this, like- 

wise, may enable us to write some forma of syntax not representable by the 

algebraic formalism, or if so, only by uneconomical programs. 

An additional feature of great power will be to allow subroutines to 

store bits in a list working in parallel with the push-down list, so that a 

syntactical property recognized in a subroutine may be tested and cause 

branching in the routine controlling it. In a binary computer it will be 

easy to store many bits in the same machine word (usually 30 at least in most 

binary computers). 

Two functions are required; * 

(a) M(X) . Copy a bit into bit position X in the k-1 th level of the push- 

down list; k is the current level of the routine in which M(X) acts. 

Z is specified using the data field of the instruction; the next instruc- 

tion is taken from the address specified in the AT field. 

(b) K(X) .  If the pseudo-machine is currently operating on level k, examine 

the X bit on level k.  If it is 1, proceed to the address specified by 

the AT address; if it is 0 proceed to the address specified by AF. 

When a subroutine is entered in level k, from level k-1 the set of bits 

(or marks as they will sometimes be called) should be set to 0. 

* There are many ways of doing this. It would be more economical 
in machine time and storage to allow the M and K functions 
to set and test many bits. For the simplicity of exposition, 
we adopt the simplest M and K functions. 



1.4   Flow Diagrams for the Syntax Machine 

The simplicity of the operations of the syntajr. machine, makes it 

possible to write flow diagrams precisely,  by the   use of the following 

conventions„ 

(1) Unless  othfervd.se indicated by arrows,  the flow of control is 

across the page from left to right,  or downwards. 

(2) Unless otherwise indicated,  true exits from comparators are 

written horizontally,  and false exits vertically. 

(3) Comparators are indicated by circles containing the character 

to be compared; Recognizers are indicated by the name of the 

recognizer,  enclosed in angular brackets. 

(4) To indicate the    M    function that places a mark in the push-down 

list, write M(X) in the diagram, where X is the mark.    For mark 

comparators,  use K(X), with exit conventions as with comparators. 

(5) To minimize lin-js of contrcl,  nodes of  the flow diagram may be 

labeled.    Recognizer exits will be labeled  ''True''  or  "False.'' 

Example: A    s; = < 13 >     (   a   (      may be diagramed as 



1o 5    Recursive Programs for the Syntax Machine 

In this section we investigate certain properties of the machine;  in 

particular, we ask for rules for constructing programs that will always 

provide a decision.    An example shows that it is possible for programs to 

cycle indefinit«ly„     (e.g.,   single instruction whose AF address is the address 

of the instruction itself).    However,  there is one main source of danger in 

programs using notation of the three standard types,  that of the careless 

use of recursion.    The manner of constructing subroutines allows recursive 

definitions to be used. 

Consider the program,    <A>;s=   <A>   <B>.    In order to test 

whether the text is a value of < A >,  the question is asked,   ''is the string 

of characters starting at this point an example of < A >?" 

This question is answered if two subsidiary questions are answered in the 

affirmative.     The first question is exactly the same  as the original  and is 

asked at exactly the same position of the input tape.    However,  in the program 

<A>ss=    <B>    <A> this  circularity does  not arise,   because the question, 

"is the string an example of < A > ?"  is  never asked twice at the  same posi- 

tion of the input string.    The tape will have moved because of the application 

of the program step < B>, which must have a successful outcome   (and hence the 

input tape moves) before < A > is applied again.    The first example is of a 

program with an   ''infinite loop;''  the second is a finite program,   if applied 

to a text of finite length  (and in practice,  all texts are finite). 

Circularity in programs  is not always so easy to discern as in the above 

example.    There is,  however,  a simple rule whose successive application checks 

absence of circularity.    A program step is non-circular if all program steps 

in itn immediate definition are non-circular when it is defined by a formula 

of type 2   (i.e.,   as a set of alternated) or  (for formulae of types 1 and 3) if 
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the first step is non-circular.    Any program step that is a Comparator is non- 

circular.    For example in the formulae of types 1 and 3 

<A.>:;=<B>   <C>   <D>      ...        or 

<A>::=<B>    <C>   <D>       ...   |<X>j 

< A > is non-circular if < B > is non-circular.    In the formula of type 2 

< A > : s= < 3 >   |<C>   j<D> 

< A > is non-circular only if < B >, < C >, < D >      ...    are all non-circular, * 

All steps in a program must finally be non-circular.    The proof of this rule 

follows from the observation that a non-circular program step either exists 

via the   ''Fail'8  exit,  or it moves the tape forward. 

Recursive definition is permissible  subject to this rule, 

1,6    The Algorithmic  Form of  the Syntax Formalism 

In this   section we explore the difference between the use of the 

syntax notation to express  rules of derivation and  rules of string analysis. 

The discussion of the previous  section shows  that some forms of recursive 

definition are invalid as  rules of analysis,   these forms may be expanded an^ 

rearranged into the form 

<A>:J=<A>    <B>1<C> 
I 

which expresses all the possible formulae rendered invalid as rules of analysis. 

The  strings  generated by this   rule of derivation are of  the form    CB  ...  B 

i.e.,  those strings which have    n >    0    strings of type B concatenated at the 

right of a C,    The algorithmic for... of the definition is<A>  s;=<C>  (<B> 

This shows how the invalid  recursion may be avoided. 

* For subprograms written in machine language, the rule is that 
the program steps that read the heads of strings must be non- 
circular. 
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Another difference is in the interpretation of the type 2 fomula; in 

the algorithmic form the order of the terms is important since it is the order 

in which tests are made. For example, the substioution rule 

< A> :;=   b   |  ba    generates the two examples "b" and ' "ba. " 

However, if this were taken as an algorithm and applied to tho string ''ba8' 

it would test merely the first character "'b,'' and finding this to be a pos- 

sible value would accept it, leaving the character ''a'' unscanned. 

Consequently the correct algorithmic form would be 

< A > :;= ba    b 

The ordering relation among the alternatives in the definiens of a type 2 

fomtula may be expressed by the rule that if one recognizer A defines 

strings that are heads of any strings defined by a recognizer B , then B 

must precede A in the formula.  If no ordering is imposed by this rule,then 

it can be made to minimize cost by testing those strings that are frequent 

before those that are rare. 

Remark 

The difference between the two formalisms is that in the case of the 

algorithmic form a direction of scan is an essential part of the interpreta- 

tion, whereas in the substitution form no notion of scanning is present. It 

is suggested that source-language syntax be expressed in algorithmic form to 

avoid ambiguity; this form may always be interpreted in substitution form 

(but not vice versa, as we have seen). Two forms of algorithmic, syntax are 

possible, according to the direction of scan; in this note the natural order 

of scanning, as in reading, is assumed. 
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1.7 The Syntax Machine with Output 

In previous sections we have discussed how to recognize texts that conform 

to the roles of a syntax; the result produced by the machine has been only an 

indication of validity. 

An output can be generated as follows; 

(1) Bach comparator instruction (reading a character of the input string) 

can be modified to write the character on an output tape if it is 

recognized by the comparator. Such comparators that produce output 

will be written with underlining.  Thus in the recognizer  < A > ii= 

:       "'a3' and ''b'' will be written on the output tape but not 

C '' whenever one is recognized by the recognizer < A >. 

(2) Whenever a ''True'' return is made from a recognizer there will be 

the option of writing a pattern of the form ( p s q s r ) on the cur- 

rent position of the output tape,.  This pattern may be written in the 

data portion of the ''True" return instruction. The elements of this 

pattern will have the interpretations; 

2a. p specifies an instruction or a macro-instruction for subsequent assembly. 

2b. q is a type number, specifying the manner in which the pattern 

( p s q ; r ) will be treated by an assembler whose input is the present 

output tape, 

2c=  r is the number of characters or character groups written on the output 

tape by the recognizer. 

(3)  If a recognizer is named by a pattern ( p ; q ; r ) the whole output 

generated by this recognizer will contribute 1 to the character count 

of any recognizer using it.  If a recognizer is not so named, each 

unit of output generated by it will contribute to the character count 

of any recognizer using it. 
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(4) The action of naming vd.ll be signified in the algorithmic notation 

by adding the naming pattern in quotation marks at the end of the 

corresponding formula. E&ample: 

< C > :;= x  /£]   •*( P s Q : 0 )" 

will recognize x, xy; xyy, etc. on the input tape and generate the 

corresponding patterns on the output tape, viz, 

(PsQsO) 

y.(PsQ:l) 

y.y,(PsQ:2) 

y.y.y,(PsQs3) and so on. 

Note that the naming pattern has r=0 in the program. 

In flow diagrams a true return with naming will be indicated by the 

raming pattern, " (PsQsO) ':'. 

(5) When a "False"' return is made from a recognizer, the output tape is 

reposltioned to the position it had when the subroutine was entered,, 

1.8 The Syntax of the Output 

The language of the output is particularly simple»  Its alphabet is formed 

from the characters of the original alphabet together with the symbols, (P;Q:R) 

which are written by naming.  These latter are ''syntactic operatorssa whose 

operands are either characters of the original alphabet or are expressions 

formed by syntactic operators. 

We define recursively the class of output strings as follows; 

1. All characters from the original alphabet are values of syntactic variables. 

2, Let V^ denote values of syntactic variables and (0jr) denote syntactic 

operators of order r, P> 0.  Then the expression, V-j_, V2,  .., , 7r  , (0sr) 

is also a value of a syntactic variable, Examples are 

(0:0) 
V.(^l) 
VtV,(0:l),(0:2) 
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3. The output string generated by a named recognizer is a value of a syntac- 

tic variable. 

In the processing of the output string, the values of syntactic variables 

will be used to construct segnents of the target language according to nature 

of the syntactic operators.  The three parts of the syntactic operator have 

separate purposes. P will be data, Q will tell how the data p and the data 

from the R operands will be combined. Thus the output string may be viewed as 

date, with the processing rules combined with it. 

The output string is an example of postfix notation, similar to the prefix 

notation of the logicians, but in reverse order. There is a particularly 

simple algorithm to evaluate axprecsions in postfix notation. Let there be 

a listp the push-down list L, each position of which is capable of holding 

(directly or by indirect reference) the value of a syntactic variable. Then 

as the output string is scanned syntactic variables are placed in successive 

positions ui L until a syntactic operator appears.  If the syntactic operator- 

is of order r, then its operands are to be found in the current last r posi- 

tions of L. The result of the evaluation of the expression specified by the 

operator is than placed in the first of these positions, say position m, and 

the process continued, with the next syntactic variable being read into posi- 

tion m+1 - or if an operator is next read, its operands will be in the positions 

M~q+1  through m ( q is the order of the operö-tor). 

For example, if the string to be processed is V-. , V0, (0,?!), (0ps2) 

the successive configurations of the list L will be 

(1) In  = V-L . 

(2) 1^ - V1 , L2 = V2 . 

(3) 1^ =-■   V, , 1^ ' 01^V2^ • b-y application of 0^ 

(4) Lj = 02^V1»^V2^  • by aPPlication of 02° 
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1„9    The Algebra of the Algorithmic Syntax 

Let X^     ( i= 1, 2   ...   ) stand in place of the forms    a  , < A >, 

< A>|    ,   *'( a^btO )'*,  i.e.,  in place of recognizer (or comparator) 

symbols,  iterated recognizer symbols and naming symbols.     Then the  standard 

formulae become 

X_       =      Xv,      X.       Xj       ...      X        from type   (l) and  (3) formulae bed 

\ Xu   | X        Xo       ...      X^      from the  type   (2) formulae. 

The  operations of  this algebra are concatenation and      !        .     It is easily 

verified that there are no commutative laws,   but associative and distribu- 

tive laws hold -   thus 

X-^X-,    r   ^2 1 ' 

(x1x2)x3 -  x1(x2x3) , 

(^ 1X2) X3    =    (X^)   I^X  ) 

X1 j Xg    ^    ^2 I % 

(X!    X2) X. (x? x.) 

X1   (X2    Xj)    =    (X^)       (X^) 

i'he distributive laws are j-inportant as they pxCvj.de ±KJT uos&xui.^ cconomi-Ziation. 

One  particular form of parenthesized-syntax notation is of importance 

because   (in this  case only)  the parentheses do not imply an internal  subroutine 

for the  bracket.     This might be called normal-concatenated form,   of which an 

example is 

Xix2(X3 | ^ I x5)    X/Xy(Xg    X^)    X-Q 

The  flow diagram for this is 

> True 

^   False 
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The general form of the normal concatenated form is 

A-^A^Ao „.. A^ where the A are either single symbols or are of the form 

( Bj^  B2  ,...  % ) where the B ar« also single symbols. 

X.   ... requires all \ The other normal form, example W=X^      (X2Xo) 

alternates which are concatenates   (except for a concatenate in the last 

position)  to be constructed as subroutines.     The above form must be program- 

med as    Z    =    XpXo   ,    W = X-]ZXi      =„a An exception is made for concate- 

nated pairs,  where the  second member stands for a naming operation. 

All these  rules follow from the interpretation of the notation.    For 

example,  consider    (.X-iXj)      X~  , where X2 is not a naming operation.    This 

program tests a string using    X-^  ; if this succeeds,  the    X^    is applied to 

the next part of the input string.    If   X2    fails,  the string must be reposi- 

tioned so that the alternate test    X3    may be correctly applied.    This can be 

done only by making    (X]_X2)    a subroutine   (whose False sxit will do the 

repositioning). 

Identity and Infinity symbols 

The notation may be enriched by the addition of three  symbols  ^V, ,  "V 

and   oO ,   corresponding to comparators which  have  respectively 

_A- ?     no false  exit,   does not read the input, 

~\/~ i     no true  exit,  does not  read the input. 

oO;    no exits at all. 

The first two of these symbols are the identity elements for concatenation 

and alternation. They allow certain transformations to be made in expressions 

of the nctaLion, according to the rules given at the end of this section. For 

example,        . 
Z"X1X2 1 X1 - X1X2  Xx-A« X1(X2 | -A.) by the distribution law. 

X2 LA.is a recognizer v.rj.th its false exit joined to its true exit. 
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The following equations hold 

JVX =        X 

X^_ -        X 

V    X =        X 

x Iv"       =      x 

Ax       ~    A- 

[^ ■ oo 

=     x|A 

x \J\S\      =      oo 

=      (A | A)    jV| 
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1.10    Eicaniples 

Triese exaraples are for the pseudo-machine with no output»    They are 

z    1/ 
comparable with the descriptions of ALGOL 60 

(1) Programs in problem-oriented languages are usually written as  sequences 

of  statements:   there may be  sevftral types of statement,, 

<Program>      ;;=   <Statement>     < <Statem3nt> [ 

^tatemen^    i % =   <Statement 1>   <Statement 2>   I <Statement 3> 

This  states that f«. program is  composed of a sequence of statements, 

and that there is at least one statement in the sequence.     There are 3 

types of statement.    Each statement type would,   of course,  be defined 

in terms of simpler syntactic variables - and in the limit,  in terms of 

the alphabet.     The application of <Program> to a string will determine 

whether the string is an example of a text in the language. 

(2) Consider algebraic prefix notation using    *,  *,  /    as binary operators 

and - as an unary operator.    Then < E > is the  recognizer for the 

notation,  where 

<E> ::=    <A><B><G>      < D >      < V > 

<A> :s=    -   <E> 

<B> s ? =    <■    <E><E> 

<C> s;»    *   <E><E> 

< D > s s =    /   < E > < E > 

< V > is a recognizer for variables and constants. 

This example shows the use of recursive definition, and it is easily 

1/  JoW, Backus et.al., "'Report on the Algorithmic Language] 
ALGOL 60, Communications. ACM 2J p.299, May, I960. 
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shown to be non-circular.    It may be written in normal concatenate form as 

<E>    ::=   < A >     < 7>      (+   1/   |*    )    <E>   <E> 

where    <A>    s;=    -   <E> 

The parentheses are used in this example as characters in the syntax 

language:  it is assumed that they will not occur in the text analyzed. 

Note that in this example the ordering of the alternates is not 

important. 

(3)    Normal Algebraic Notation 

We repeat example (2) but now using the more usual infix notation, 

with the operators as binary connectives. 

<E> ::=<F>[<S>j     3.1 

<S> t%=   <+-> <T> 

< F > :;= < T > 

< +- > ss=   + I 

•^ i >> := < A > 

< S > 

<x V -> 

3.2 

3.3 

3.4 

3.5 

< A > ss= < V > <*/ > < T > 3.6 

< */ / 3.7 

The notation may be extended to include parenthetical notation in the 

text by replacing < V > by < W> in 3.5, 3.6, and adding two more 

lines» 

< W > :;= < V > | < (E) >    3.8 

< (E) > ;:=  ( < E > )        3.9 
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Remarks 

3.1 says that an algebraic sxpression is composed of a first part 

< F >, followed by an indefinite number of subsequent parts < S >, which are 

additions or subtractions of terms < T >.  3»3 says that the first part is 

either a signed term < S > or an unsigned term < T >. By 3.5 < T > is either 

a product-quotient form < A > or merely a single variable < V >|  it is impor- 

tant to test < A > before < V >, sine« < V > occurs as the first element in < A >. 

Suppose the order of 3-5 had been changed.  Then 

< T > < V >      < A > 

: = < V > 

: i = < V > 

;;=   < V > 

< y >  < */ >  < T > 

71 < */ >    < T > 

from 306, 

by the distribution law. 

using the laws of the algebra. 

Clearl""" somethin0" is vroii17 with this    as vras to be expected. 
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Part 2. Applications of the Syntax Machine 

In the first part of this report the syntax machine was defined and is 

properties discussed. Now we go on to discuss its application, and in so 

doing we see what are the desirable and necessary properties of an assembly 

program which can process the output from the syntax machine. The whole 

translation will be a multi-stage process in which syntax analysis alternates 

with assembly operations. The assembly operations construct new strings 

which may then undergo syntactic analysis.  How many times this has to be 

done will depend on the source language. Whether the alternation of syntax 

analysis and assembly is made over segments of the text or over the whole text 

depends also on the source language and on the amount of storage that may be 

available for intermediate strings. 

For example, any language that contains declarations will require several 

alternations between syntax and assembly processes. Consider how names are 

used for different types of numbers, e.g., fixed-point and floating-point 

numbers.  If the distinction between these classes of numbers is made by a 

declaration, rather than by properties of the names themselves (e.g., by de- 

fining integer variable names to be those that begin with I, J, K ) the declara= 

tions must be used to form tables of the names of each class. These tables 

must then be consulted to find the syntactic properties of the objects named, 

whether they are integer variables, or are functions and so on. 

This table lookup feature is not a property of the syntax machine as 

described! it is proposed that this should be part of the assembly processes. 

Syntax analysis is, however, usually sufficient to separate names from operator 

signs, since it is unusual for the syntax of names to change within segments 

of a program.  Thus, the strategy for translation would be 

(a) Use the syntax analyser to discover the names and operator signs in 

segments of the text. 
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(b) In the output there will be values of syntactic variables corresponding 

to names, literal constants and other character groups.    For example, 

the name    ABC    will appear on the output from the syntax analyzer as 

A,  B,  C,   (0;3), where 0 will specify an assembly process,  that might 

replace A,  B, C,   (0t3) by a  "co-ordinate name"]!, meaning that ABC 

is the n'th integer-variable name.    I    will be constructed from the 

position of ABC in the table  of integer names, and will be stored as 

a single character that will be recognized syntactically in a later 

use of the syntax analyzer as a member of the class    I. 

(c) The syntax analyzer can then be applied to strings which now consist of 

operator signs from the original text and co-ordinate names which stand 

in place of the original names and literal constants. 

These semantic considerations shall be deferred to part 3 of this report. 

They are mentioned here so that it will be possible to use co-ordinate names 

in this part without implying that theee co-ordinate names are written in the 

original text.    We shall also be able to treat words like   "if,"   "then," 

"do" and other such words as single characters of the string analyzed.    This 

will simplify the exposition.    We shall therefore,  in this part, now ignore the 

interplay between syntax analysis and assembly. 

2.1    Example 1.    Addition and Subtraction of Floating-Point Numbers 

(a)    Source language syntax. 

< E >      ss=    < F >{< 3 >} 1.1 

<F>       :i=<Vi>j<Ci>j<S> 1.2 * 

< S >  ?;= ( + I - ) < F> 1.3 

For example s V^ + C^ - V2 . 1.4 

* < 7^ >, < Ci > are recognizers for floating-point variables and 
constants. 
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(b) Syntax Program with annotations 

<E>    ::=   <F>   /< S >J "(OsvsO)"        1.5 

<F>    :;=    -< T>  "(GLSsa^O)"  |    (+ | 7L) < T >  "(CLA;a:0)'°    1.6 

< S > ;:= < SI > I < S2 > 1.? 

<S1>::= +<T> ••(FAD:a:0)" 1.8 

<S2>;;:=        -<T>     " (FSBsasO)*s             1.9 

< T > s ;= < ^ > I < 02 > 1.10 

Explanation: 

The source language syntax defines valid strings to consist of a first 

signed or unsigned term < F >, followed by an indefinite number of subsequent 

terms < 3 >, which are signed. In step 1.5, the naming operation "'(OSTSO)" 

represents an assembly operation that will put together the separate terms to 

form the whole expression„ These terms each generate an instruction in the 

machine language by naming operations such as ""(CLAsasO)'' where ''a'" specifies 

an assembly operation to combine tne data portion of the naming operation, e.g., 

CLA, with the name or symbolic address of the variable or constant. 

The application of the syntax program to the example 1.4 produces an 

output string 

Vi , (CLAsasl), Gi , (FADsasl) , V2 , (FSBsasl) , (Chv^)      1.11 

By virtue of the step 1,10 the names of variables and constants are copied 

from the input to the output strings:  these are the only characters so copied. 

The choice of machine instruction is made in SI and S2 from the signs + or - 

on the input string but these signs do not appear in the output, being replaced 

by the corresponding machine instructions from the naming operations„ 

When the string 1.11 is assembled, two processes occur 

(l) Combination of a symbolic address with a machine instruction. 

V , ( OPsasl )   —>  OP V   . and 
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(2) Combination of several segments of code (here 3 separate machine 

instructions) into one segment. 

Si, 32,  ,.. , 3r,  (0;v:r)  _> SjSg ... Sr 

Such assembly operations convert 1.11 into 1.12, 

CLA V! 

FAD G! 1.12 * 

FSB V2 

which is in the target language. 

2.2 Example 2.    Extension of Example 1 to Include Storage Operations 

Esample  1 may be extended to include simple  assignment  statements, 

so that statements like    Vo = Vi + C^ - V2    may be translated. 

We give tw examples,  where only one assignment of a value is made,  and where 

many variables may be assigned the same value,  as in   V^ = V2 = V'j + V^ . 

(a)    Single assignment. 

<H>    !!=   <G>   <E>    "(OsbsO)" 2.1 

<G>    ::=<Vi>        =        "(STO;a:0)" 2.2 

Here < G> represents the assignment part  *'V ='',      The  ''="  sign is not 

transmitted to the output string, being replaced by the naming data.    The 

two parts of the assignment statement are < E > which is the < E > of 

example 1,  and < G >.    The naming operation  '!(C:;b:0)" will combine these 

so that the assignment follows the calculation s    it should always have 

two arguments which are blocks of code to be interchanged. 

The meanings of the machine functions are: 

CLA  ;     clear the accumulator and place the quantity addressed 
in the accumulator, 

CIi3  t    clear and subtract. 
FAD ;    add into the accumulator,  using floating-point arithmetic. 
FSB :     subtract from the accumulator,  floating point„ 
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(b)    Multiple assignment 

<H>    ;:=<!>   <E> "(0:bsO)" 2.3 

<I>    :;=    <G>    f<G>     "(0:v;0)" 2.4 

where < G > is an in 2„2   .    Step 2,4 says that there may be one or more 

assignments, which are grouped by an assembly operation  "v"'  before 

being interchanged,  according to 2.3i   by '"b.'' 

2.3    Example 3.    Arithmetic expressions using    +.-.*,/ and parentheses 

We use the JEM 709 a3 the  target machine.     In this machine,  as in many 

others, there are two registers concerned with multiplication and division. 

One register,  the AC,  is  concerned with addition and subtraction,  and holds 

the result of a multiplicationj in it must be placed the numerator before 

division.    The other register,  the MQ,  holds the result of a divisionj  in it- 

is also placed one of the factors of a product before multiplication.    Conse- 

quently,   there are certain forms  ror which it is unnecessary to use intermediate 

storage;   for floating-point arithmetic these  are 

(a) + X*Y/Z*    OO0     , where multiplication and division alternate. 

(b) + X*I/    ...    /U*W i 3 + T  ...   , where multiplication and division 

alternate in the first term,   the last operator in the first term 

is  * and then follows addition or  subtraction. 

(c) +  (+X/Y*    ...    *Z + A ...) /U. ...     , where a parenthetic expression 

will provide a  result in the AC, which is the  numerator for a 

division. 

For problems of this sort we must use the machine instruction program- 

ming for the syntax machine.    We  shall  see here the use of the marking and 

sensing operations, M(X) and K(X)!, which allow notes to be kept of where inter- 

mediate results are to be found at the various stages  in the object program. 

In devising programs of this sort, it is fruitful to consider the states of the 

target machine as it would obey the program we wish to generate.    There will be 
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states in tho syntax, program corx-esponding to the states in the object prograiti 

being generated; these states in the syntax program will be the states at the 

connnencement of the program steps (or on lines in the flow chart). Sometimes, 

a state of the syntax machine) will also be represented by marks placed by M 

operations, for later sensing by K opeeations,, 

There are four principal states of the target machine called A+, A-, Q+ 

and Q-, when the AC, MQ. is holding positively (negatively ) the result of a 

partial evaluation of the expression. Correspondingly named states exists in 

the syntax machine.  These four bit-symbols are used by M and K operations, 

and are also used as labels in the flow diagram. An example of the use of this 

notion of states in the object machine occurs in the scanning of the expression 

-X'^Y+Z''.  This is analyzed by the syntax program as - (X*Y-Z) since we can 

only form products positively in the AC, and may be able to absorb the negative 

sign on - (X*Y-Z) in a later operation, so that A+ (-X*I+Z) can be computed as 

A- (X*Y-z), for example.  The states that occur during the computation (and 

during the syntax analysis are 

text: -X*   Y    +Z 

states: Q-   A-    A- 

output form:      X«    Y    -Z 

and since the end state is A- , the object program, will produce the negative 

of the -X*Y+Z ,  There will be a mark. A-, in the marker part of the push-down 

list, so that it can be subsequently recognized that a program to evaluate the 

negiMve "ras been constructed.  In general, the process brings negation from 

the in .'!o of parentheses to the outside; at the worst, therefore  it will only 

be necessary to provide a change of sign for any parenthesized expression, and 

then only for the complete expression and not for any of its parts.  Indeed the 

only occasion when a negated result will be produced .may be discovered by the 

application of the rules: 
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(1) A variable or constant has parity +l   . 

(2) A parenthesized axpression has the parity of its first term. 

(3) If the first term of an expression is  of product-quotient form, 

its parity is  given by rules   (/+),   (5) and   (6).    Otherwise,  the 

parity is +1   . 

(4) If the first of the multiplication or division operators  is   ''*'', 

then the  parity of the  term is  the evaluation of the term 

(including leading + or - signs) using the parities of the 

components as values. 

(5) If division comes first,  and the first numerator is a variable 

or constant,   then the parity is the evaluation of the  term using 

parities,  talcing that part to the right of the first   ''/"sign only. 

(6) Otherwise,  proceed as in rule   (/+),  but with   "/" instead of   ''» "   . 

If the  parity of the  expression is    -1,   its negative will be produced. 

The target-machine instructions  used are 

LDQ    load the KQ register. 

FMP    multiply the number in the  MQ by the number in the 

specified address.     The  result appears in the AC. 

FDH    divide  the AC by the  r.umber from storage:   the quotient 

appears in the MQ. 

XCA    interchange the contents of the AC and MQ. 

FAD    add to the AC. 

FSB subtract from the AC. 

CLA clear the AC and add.       STO store the AC. 

CLS clear the AC and subtract.   STQ store the MQ. 

In the course of evaluation it is sometimes necessary to store intermed- 

iate results: for this purpose the assembly process following syntactic 

analysis must be able to generate the address of a working location.  The 

syntactic operator (Dsc:0) does this, where D will be the machine instruction 

required to store the result. If a parenthetical expression, say (A-B) , 
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requires the rssuli to be stored,  the corresponding output produced by the 

syntax analyzer will be 

...   , A,   (CLArasl),  B,   (FSB:a:l),   (STO:c:0),   (0:v:3)  

(STO:c:0) will obtain a working space location, say W, and construct the 

instruction STO W , leaving it in the push-down list of the assembler so that 

when the operator (0:v:3) is processed it will have as arguments the three 

assembled single instructions (in this case) CLA A, FSB B, STO W .  (0:v:3) 

assembles this into a block of code, placing the name of the result W in the 

push-down list. Later W will be combined with a machine instruction by an 

operator of type (D:a:l), at which point W could be returned to the list of 

addresses available for use as working space. 

The syntax program flow diagrams follow. < E > is the recognizer for 

arithmetic expressions; successful outcome will be marked in the syntax machine 

push-down list by A+, A-, Q+ and Q- according as the result in the object 

machine would be in the AC (positively or negatively) or the MQ (positively or 

negatively). 
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2.4    Bxample k.    Assignment Statements uainR the Sxpreaaions of Ex.3 

We treat assignment statements like    A=B=    ...    C= E where E is an expression 

of the type < E > of the previous example. 

The source syntax is < AS >    :2=   < ^ >    =   < AS1 > 

<AS1 >    ::=   <E>    I   <AS> 

At this point we could merely treat Ex. 4 in the same manner as Ex. 2. 

A feature of this type of treatment for this case would be that we have to 

decide which type of  storage instruction to use according to  the mode A+,  A-    or 

Q+, Q-   of the right hand side.    In Ex, 2, it was possible to know what type of 

storage instruction was  required as  soon as the " = "wa3 scanned.     In Ex.  4 , 

this is not so„     It could be assumed that the mode was    A+,   say,   and scan the 

right-hand side.     If the assumption were correct,   the assignment statement 

could be constructed.    If not another assumption could be tried,  and the 

assignment statement re-scanned„     This might have to be  repeated before a 

correct assumption is made. 

In example 3 the necessity for multiple scanning is largely avoided by the 

use of state markers:     in example 4,   to save multiple scanning we require new 

apparatus, which may be a part of the assembly process rather than the syntax 

machine.    We must have  some process of  re-ordering so that  the names of the 

variables on the left of the   "'="  sign may be combined with functions  chat can 

be specified only after the right-hand side of the assignment statement has been 

scanned.     Recall that the  symbols copied from the input  to  the output tapes of 

the syntax machine are in the same order on both tapes.     For the statement A=E 

we  can most simply generate an output    A,(E)VF where   (E)  stands in place of 

the string  generated by the  right-hand side,   and will eventually in the 

assembly process be represented by a single level of the assembly push-down 

list.    The symbol F stands for a syntactic operator,  or set of syntactic opera- 

tors which,   because their generation by the syntax machine  follows the generation 
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of (E), can be made to depend on the mode of (E). 

The primitive operator that we seek is a sort of interchange operator 

'*(0:e:0)" of actual degree 2, but appearing with 0 as its ostensive degree. 

To use it, and to preserve the well formed nature of the postfix notation at 

all stages of its  processing we require a null syntactic variable .AQ .  The 

action of this operator is defined hj  the transformation 

(D) , (E) , (0:e:0)   -  A0  ,   (E) , (D)   ... 2,4.1 

in the assembler's push-down list.  The null symbol ./L. will not occur as 

an argument of all syntactic operators| it will occur as an argument of 

(0:v:0) but not of (0:asO). 

The flow diagram for the assignment statement follows 

<AS>  ::=  <Vi> = <AS1> ^ (O'.vtO)" 

<INT> ::= "(OsesO)" 

<STa> :-=  <INT>  "(STOsasO)" 

<AS1> -<AS> 

<AS2>. 

I 
fail 

-4- -K(A)- 

KCQ)- 

■<STa>- 

-<STXS>- -> True 

<AS2> 

fail 

-K(AH)- 

K(A-)- 

K(Q+)- 

-<CHa>-* M(A 1 
-M(Q)-4—"(Otv:0)': 

K(Q-)- •<XCA>-1 

<CHS> (GHS-a;0)' 
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If this program is  applied to the assignment statement   "B=C/D"   , 

the resultant output is 

B,  G,   (CLA:a:l),  D,   (FDH:a:l),   (0:v:2),   (0:vsl),   (0:e:0),   (STQ:a:l)s   (0:v;3). 

When the ''interchange"  operator comes to be processed by the assonbler,  the 

assembler's push-down list contains  (or refers to) 

Position: m m*l m+2 

Contents: B CLÄ G (0:e:0) 

FDH D 

which changes by the   "interchange'' operator to 

Position: m m+1 m+2 

Contents: VL0 CIA C B 

FDH D 

at which point B is now available as the argument for the operator (STQsajl) 

which converts position m+2 of the push-down list to STQ E.     The last operator 

then completes the  evaluation of the program. 

2.5    Example 5 

Simple  Relational Expressions 

Here we  consider relational expressions  such as X > 0  ,     X > Y and so on, 

where the  general form is E]_ Op E2,  where Bi,  Eo are  expressions which have 

values which are numbers  and Op is a relational infix operator specifying a 

condition that holds or does  not hold   between the values of E^   ,  Ep   .    The 

result of the operation is a binary VPJVJ, which we shall take to have the 

following interpretation, 

(a) If the condition of the relation is satisfied,  the object program is 

to branch, 

(b) If  the  condition is xiot  satisfied,   the branching operation is to be 

ineffective. 
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We shall consider only those relations where B, Op K, is equivalent 

to E, - B, Op 0, e.g., where Op is the relational operator -, ^, >, > etc» 

The object program that results will be a computation of B^ ~ &>i followed by 

a branching instruction« The program branches if the test is satisfied, 

We shall consider first the case  £5=0, and then treat the more general 

case. In anticipation of the next example, we shall provide a moans of 

complementing the relation during syntax analysis, so that, for example, X = Y 

oould be translated as if X 7^ Y had been the text. 

For the special cases, the initial translation from the original names 

to the co—Ordinate 116.1*163 can be extended to recognize the dj & grams 's:0  ^0 etc, 

translate them by single characters =' , f  etc. These characters will now 

distinguish the special -ases. 

Then the syntax program for the recognition of simple relational expres- 

sions is an extension of the program for recognizing arithmetic expressions, 

which is used to scan the arithmetic expression part of the relational expres- 

tion. The appearance of the relational operator forces an exit from that 

recognizerr whereupon the appropriate branching instruction can be added to the 

output according to the typs of relational operator. We shall give an example 

for translation to the IEM 709 for the operators «•' and ^s „ 

The syntax program follows: it uses a new assembly operator (DsdsO) 

which constructs a branching instruction with machine instruction code u, and 

notes in the assembler's push-down lists that the constructed instruction lacks 

a transfer address which must be filled at some later time in the assembly. 
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R > -< E >- 0 K(A+)- 
K(A-)- 

K(i-) 1 
/ ) K(Ä + }  

-<XCA>- -CTZE>- (OsvsO)" 

K(A-)- 

m-y -<KCÄ>- --<TNZ>- '(Osv:0)" 

etc. 

TZE 

TNZ 

XCA 

'(TZE;d;0)Si 

'CmZtdtO)" 

'(XCAiasO)" 

The complementary recognizer < R > is similar to < R > but with the 

comparators ='  and  j^'    interchanged; it can therefore be constructed 

with much in common with < R >, 

For the general case En Op &?, the strategy for constructing a recog- 

nizer is to analyze the expression E^ as in example 3 until the relational 

operator is encountered. At this point a chain of comparators can be used 

to test for each relational operatorj and make a mark in the syntax machine's 

push-down list using an M operation:  the state of the recognizer < E > 

(i,,e„,  A+. A-, Q+s Q~ ) may then be tested so that < E > may be entered again 

*  Two IBM 709 machine instructions have been introduced, namely 

TZEptransfer control if the AC is zero. 

TNZ8transfer control if the AC is not zero. 
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(but not at its normal entry point) to complete the recognition and corres- 

ponding program generation for the expression -Ej+Eg *. That is, the syntax 

machine is programmed to read En Op Eo and provide an output as if it had 

been reading the arithmetic expression -B^+E2 . This is achieved by entering 

< E > for the second time at the position (in the flow diagram of Example 3) 

A- (or A+ , Q+ , Q- ) if the output state of < E > on its first use had been 

A* (or A- , Q- , Q+ respectively). On the exit from < E > for the second 

time it is possible to add the appropriate branching instruction, since the 

specification of the relational operator has been preserved by a marking 

Operation, 

* For this process to be effective, the expression Ej must be signedj 
this necessary sign can be added in the preliminary scan, just as 
the characters HD were replaced by =' for the simpler case. 
Thus X=Y should be transformed to X=+Y . 
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< Rl > -< E 

K(=)- 
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! 
K(>)- 

K(>)- 

K(<)- 

K«)- 

<TZE> 

-<ni2>- 

-K(A+)- 

-K(A+)- 

K(A+)- 

•K(AO- 

M(=)- 

M(/)— 

-M(>)- 

• M(>)- 

-M(<)- 

.M(<V 

•K(A+ 

K(A-)- 

^.TGH>- 

-<TL2>- 

■^TGE^- 

-<TL£>- 

-<TLE>- 

-<TLS>- 

-<TGK>- 

.K(A-)- 
I 

K(A+)- 

m-y- 
K((i+)- 
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1) 

'(0:vS0)" 

-<EA(+)>- 

^CE(A->- 

-<E(Q+>  

^E(Q->— 

^ 

M(A-)- 

•M(A+)- -> Time 

Notes    1)       TGE is  a subroutine to construct on the output tape an 
xnstruction to branch if AC is  greater than or equal  to 
zero.     To write this we  require an assembly operation not 
yet introduced.,,    In example 7 we return to this matter. 

2)    The other subroutines have obvious   significance.     The 
subroutine    <E(A+)>is the subroutine < E > of  example 3 
entered at the point labeled    A+   „ 
Similarly for the others. 

2) 

Program for simple relational expressions. 
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2.6 Examplie 6. Combinations of Relatdons 

In this example we treat combinations of relational expressions using the 

Boolean operators ''and,'* ''or'' and ''not.'* In so doing, we introduce a 

novel algorithm for the analysis of logical expressions by use of the syntax 

machine. 

In examples 1 to 4 we were translating programs which did not have branch 

points in their control sequencing so that the object program was obeyed 

sequentially.  In example 5, we had object programs with a branching operation. 

Now we combine programs that have branching. 

We define a program block as a block of object program which is an assembled 

single instruction of object code or a block of code assembled from program 

blocks. Program blocks may be conditional, when they haTe one skip exit in 

addition to the exit of normal (sequential) sequencing - or they may be uncondi- 

tional, lacking the skip exit. Within a conditional program block there may 

be many branching oper-ationa, but Lhe block as a whole has one skip exit. 

Program blocks may also be labeled, but by one label only. 

For example 6, we need three assmebly operators for combining conditional 

program blocks. These are (Osvsü), (OswsOj and (OsxsO). The first of these, 

(Osv;0), has been used before without all its properties be:ing announced; it 

combines those program blocks which are its arguments into one program block 

whose skip exit is the common skip exit of the argument blocks.  If all the 

arguments are unconditional, the result is also. At most,one of the arguments 

may be labeled, which label (if any) is the label of the combination. 

The operator (ChwsO) has two operands, which are program blocks. If (A), 

(B) stand in place of program blocks, the block (A),, (B), (0;w;2) is the ccmbina- 

tion of the blocks (A), (B) (in that sequence) with the skip exit of (A) joined 

to the label of (B). The conditionality of the result depends on the conditiona- 

lity of (B);  the result is labeled by the label of (A). 
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The third operator is a labeling operator (0:x:0), which has one operand, 

which must be an unlabeled program block. It provides a label for the block 

so that a transfer of control could be made to skip over the block. 

The diagrams for these operators are 

dh 

m 
i 

^ 

skip exit 

A, B, (0:v:0) 

skip exit 

A, B, (0:w;2) 

V 

k,   (0:x:l) 

They provide the mechanism for realizing conditional expressions. For example, 

if P(A) is the proposition that the skip exit is the actual exit from A , 

when program A is i-iui, then 

p(A,B,(0:v:2)  =  p(A) v p(B) 

p(A,B,(0:x:l),   (0sw;2))    =   PHT A  p(B) 

The  operators are chosen so  that the normal exit  from the first program block 

is the normal entry to the  second program block.     Thus the program blocks may 

be assanbled in position before the connecting operators  (0:vsO) and  (0;w;0) 

have been reached.     Together with negation,   these operators  enable binary 

decision programs  to be written for any Boolean function.    Moreover,   if the 

logical operators    =    and    £    are not used,   the Boolean function can be 

re-written by changing the operators only,  without duplication or change of 

ordering of the predicates or program blocks. 
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We are now in a position to vrrite a translation algorithm for the 

source language  string defined by 

< CR >    ;: =   < Cl >    or   < CR >     j   < Cl > 

< Gl >    ::=   < G2 > and    < Cl >    j     < 02 > 

< C2 >    ::=      < R > not   <R>     \     (< CR >) 

where    R   are  simple relations of the form    Ei   R E^    as treated in the 

previous  example, 

The analysis  is made in terms of the operators     (0:v:0)    and    (0:w:0), 

or rather in terns of the  corresponding logical operators.     Because the input 

text is written using  ''and,''  but the analysis is made in terras of  *'w, *' we 

require complementary pairs of  recognizers so that teirms like   ' 'R.   and R„' ' 

may be translated to   "net R,  w R2',.     In this example vre have to apply the 

complementary recognizer to the first operand so that   ''R, *'  is translated as 

if   "not RT''  had appeared on the input string instead of   "R_ ".    The use of 

De Morgan's  rules also allows  the   "not"  operarions  to be  passed inside 

parentheses  so  that in the translation they apply only to  the simple relational 

expressions. 

The syntax program    < CR > follows 
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< CR > < ci > (or) < CR >- '(Oiv.O)" 

< CR> < Cl > (or) < CR > >"(0:w:0)" 

—>True 

< 01 > < C >- ■> True 

<C2>_1   and   )—< Cl > ^"(Osw:0)' 

error 

< C > < C2 > 

< C2 > 

< C2 > 

*-^True 

Syr!.tax Program for Combining Relational  Expressions 



2.7    Eicample  7,    Simple Branching Instructions 

We deferred from example 5 the matter of how to write certain branching 

instructions which have no counterparts as  single Instructions  of the machine's 

code.    For example,   on the  131 709 to test that the contents of the accumulator 

is  greater than or equal to zero, we must first test for zero and then for 

positive accumulator.     This  is because the number representation is by sign 

and absolute value,  and the branching instructions operate on the sign  ( TPL = 

transfer on positive or TMI = transfer on minus)    or on the absolute value of 

the accumulator  (TZE = transfer on sero or TNZ  = transfer if not zero). 

Thus  to provide a branch on the accuBiu] a tor beins: positive or sere ws 

require a TZE instruction followed by a TPL instruction both with the transfer 

address.    The  assembly operators introduced in the last example now make it 

possible to write  segments of the output string that correspond to tests for 

the inequalities in the source language,  as follows 

Source language Ouuput string translation 

> (TZE;d:0)   ,   (TPLsdsO)  ,   (Osxsl)  ,   (Chw:2) 

< (TZEsdsO)  ,   (TMI;d:0)   ,   (Osxsl)   ,   (Chw:2) 

> (TZE:d;0)   ,   (TPL:d:0)   ,   (0;vs2) 

< (TZE;:d;-0)   r,   (TMIsdsO)  ,   (0svs2) 

We can now construct subroutines to provide these output strings. For 

example the TGR subroutine, to test > , in example 5 (second part), may be 

written 

<TQB>  ss=  <TZE>  < Tl >  "{OtvzO)"     ,  where 

<TZE> ss=  a,(TZE;diO)iS 

<T1>;:=  <XPL>   "{OixzO)" 

<TPL> i%=      "(TPLsd^O)" 

The subroutine for providing a greater than or equal test is 



<TaE>  , whe'-e 

<TGE>  ::-   <TZÄ>      ^"P^     "(OtviO)" 

and <rZS> and <TPI>    are the   subroutines described above. 

2.8   Example 8.    Iteration Statements 

Trie purpose of this example is to introduce another syntactic operator 

(or assembly operator) of order 2 which will be useful in the construction 

of program loops.    Consider two programs    A ,  B   where    A   and    B   stand for 

the syntax machine output for these programs.    Program    A   must be a labeled 

program and prograin B    must be conditional.     Then the operator    (0:y:0) applied 

to    A ,  B    forms a combination of    A   and    B   in that order with the skip exit 

of   B   connected to the labaled entry point of    A , as shown below. 

C =     A,  B,   (0:y:0) >  B 

-^T 

The result program C may itself be conditional, if A was conditional, 

or labeled if B was labeled. In other words C has the skip exit (if any) 

of    A,  and the label of    B    (if any). 

As an example, consider an iteration statement whicn in the source language 

consists of three parts concatenated e.g.,    A    B    C  , where 

A represents an initiali?ation of variaMe s  (i.e., iterates). 

B represents the calculation of new values of the iterates 

from the old. 

C represents an end test for the iteration, 

so that the diagram for the program is to be 

 <  

HZHHä]—>—0—> 



Clearly C is a conditional program and A must be labeled: the postfix 

representation is either 

D=   A, (Chx:l), B,   (0:v:2), C, (0:y:2) ...  2,8.1  or 

D2=  A, (05x:l), B, C, (0sv;2), (0sy:2) ...  2.8.2 

according as    3    is first combined with    A    or with    C.    In      2.8,1 

B    could  be a conditional program,  but not labeled: in      2.8,2 

B    must be unconditional  but may be labeled. 

We refrain from giving further examples,  as we now go on to consider the 

properties of the translations that have been illustrated in the preceding 

example s„ 

Remarks on Part 2 

In examples 1 to 8 we have shown various examples of translation that the 

syntax machine and a suitable post-assembler can make. We now gather together 

some of the salient features. 

The principal property of the process is that the ordering of the variables 

is  not  changed by the  translation,   except by the  re-ordering of arithmetic 

expressions by parenthesizing and by the interchanges made by the operators 

J'b''   and  ''e''.    Example h shows how the role of the interchange operator  '"fo'' 

can be taken over by the operator  ''e"',   so we may consider   !Se'
8  only.    The 

properties of   "e*'  depend on the assembler. 

The simplest assembler would be one which assembled directly into machine 

code and placed each instruction into its final position. Thus "e" could be 

used to  effect the transformation    2.4.1,   i.e., 

(D),   (E),   (OsesO)-» -A.0>     (E).   (D) 

only when (D) stands for the address part of an incomplete machine instruction, 

-.«rhere (D) is stored directly in the assembler's push-down list and not merely by 

reference to an assembled set of machine instructions already located.. 
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We hope to show in part 3 of this report, how this condition on transla- 

tion may be relaxed by using the mechanism of declarations. 

Another property of the object program is that no advantage has been taken 

of cOTmon subexpressions, to economise in the object code. It is the author's 

opinion that the search for common subexpressions in algebraic formulae is a 

simple matter for the composers of programs and should be left to than rather 

than to the mechanical translators if it is desirable to have a quick translation« 

The same may be said about many other forms of economization which could be made 

unnecessary by simple rephrasing of the source program„ Example 3 shows,, however, 

that economization in the use of arithmetical registefs is poaaible. 

The syntax machine can differentiate many special cases of the source- 

language text where the properties of the target machine allow the use of program 

tricks. With some of the extensions to be proposed in part 3 of this report, 

it becomes possible to recognize many special cases in the source language that 

are of common occurrence, and to provide corresponding segnents of machine code 

(or macro-instructions). 

The program combination operators v, w, x, y provide a quite powerful 

notation for combining programs with branches; in effect they provide a method 

of writing a wide class of branched programs without using explicitly written 

labels. For example, in the iteration 2.8.2 of example 8 the iteration part B 

could be entered from some program other than the initialization program A„ 
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3,1 Part 3. Declarations 

Declarations are made about symbols used in the source program and alter 

their meaning. They are used to specify which names apply to the various 

classes of objects in the program, e.g., which are names of floating-point 

variables, fixed-point variables, functions, procedures etc. They may also 

be used to define new functions in terms of existing functions, or to define 

symbols which stand in place of whole segments of text.  In addition the 

mechanism of declarations may be used internally in a translator. 

We distinguish between two occasions where Declarations affect the translator, 

when a Declaration is made and when a Declaration is used. For example, if 

we wish to use the name ''ABC1' as the name of a function, it must be declared 

to be the name of a function. This declaration may be explicit, when a segnent 

of the source text says ejqalicitly that ABC is a function, or the declaration 

mav be intnlicit- when A.BC appears in such a manner that the syntax shows that 

a declaration about ABC is being made as a part of another declaration, as for 

example in 

ABC(X.Y)  = X sin (Y), 

which definition might be given without any explanation in the source language, 

because this form of expression could only be what it is, a definition of a 

new function whose name is ABC. 

The declaration is used whenever the objects named in the declarations 

are used elsewhere in the text, as for example if we IB e the function ABC as 

part of an arithmetic expression, e.g., 

Z= X + /TC (X+y,w) 
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We sbKll fliscuss three types of declaration 

(1) Declarations about the syntactic properties of names. 

(2) Declarations which define substitutions, jhere a declaration is 

made that a symbol stands in place of a string of symbols. 

(3) Declarations about substitutions in which, when substitution 

is made of a string for a symbol, the string is modified by 

parameters. 

3 »2 Declaration3_a.bout Syntactic Properties 

An example of a declaration about syntactic properties would be 

Integers, A, B, Cl 

which delai-es the names A, B, Cl to be the names of integer variables. We 

regard the properties of names as syntactic properties9 because in the analysis 

of statements we must distinguish between the various types of variable , and 

between the names of variables and the names of functions„ Our intention is 

to replace the names like A, B, and Cl by symbols like I^p 1) and IT which are 

so constructed that the syntax machine can recognize them as the names of 

integer variables» The. subscripts could have uses in storage allocation. 

However,, we must first recognize declarations before we can act on them. 

To recogniz-e such declarations and distinguish them from other forms of state- 

ment ws assume that the Syntax Machine is analyzing programs statement by 

statement« Let us suppose that there are several sorts of property for which 

we wish to make declarations about nanes. We can start the scan of statements 

by checking whether any of the leading words are signals for declarations. A 

chain of comparators will do this„ For example, if we have the declarations 

about integer variables, functions etc., we could use the following syntax, 

program < SD >„ 
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< SD >     ::=      < DI >   1   < DF >   |...      < ND > 

where 

< DI >    ::=     integer      js  1 Ju < ZI >    "(0:m;0)" 

< zi > :?= < zn > f< zu >1 

< ZI! > :; = < ZI2 > j D 

< ZI2 > SS- L fm.1        "(IsksO)" 

and < DF > is similar to < DI > but begins with a chain of comparators for the 

word, "Functions'' (or its singular), and the subroutine corresponding to < ZI2 > 

is named by the operator "(FsksO)". < ND > is the syntax program for state- 

ments which are not declarations« L is a comparator for letters of the alphabet 

and NL is the comparator for letters awi numerals. U is a comparator for all 

characters but the statement ending punctuation, 

The syntactic operators are 

' "(Osmsr)'*    Return control to the syntax machine from the assembler, 
resetting the assembler push-down list so that the next 
symbol placed there will be in the same position as the 
first symbol used in this use of the assembler. 

''(D:k:r}''    This is a combined table lookup and table constructing 
operator. It constructs and uses a table of equiva- 
lences befcvf?en external and internal names. A possible 
definition of this operator might be: 

(a) If DO £.nd the external name is not already stored, 
store it in the proper place and generate a corres- 
ponding internal identifier, placing it in the 
corresponding position of the table and in the 
result position of the push-down list. 

(b) If D^O, find the place in the table for the 
external name and in the correjrponding position 
for the internal name place a generated symbol D^,, 
where any name so generated may be recognized by 
a comparator as an internal identifier of class D. 
Place DJ in the push-down list» 

(c) Otherwise, look up for the external najne and 
place the corresponding internal name in the 
result position of the push-down list. 

In the use of this operator in the making of declarations, 
only operation (b) would be used. Part (a) of the operator 
makes it useful for deeding with the class of names about 
which no declarations are made. A possible method of storing 
external names is discussed by Williams (Comm. ACM 2. 6. p21 

June"1959)o 



49 

In the program < DI > and, corresponding programs, the return from the 

program must be made in a special way. When the operator ''((hnur)" has been 

written on the output string from the syntax machine, the assembler is then 

entered to evaluate the part of the output string generated by the subroutine 

< DI >; after the evaluation process, control returns to the syntax machine 

which is set so that further output overwrites the string which the assembler 

processed. 

If the program < DI > is applied to the example at the beginning of 

this section the syntajc iBachine produces an output 

whose evaluation by the assembler will store the external names and generate the 

corresponding internal names. 

In statements which are not declarations, external names must be replaced 

by their internal name equivalents.  This may be done by the program which we 

shall discuss in the next part where we show how statements may be handled by 

a similar mechanism to substitution declarations. 

3.3» Substitution Declarations 

We now consider the type of declaration where a string in the source language 

is given a name, which may thereafter stand in place of the string. There are 

two sorts of replacement which we might consider; replacement in the input string, 

and replacement in the output of the syntax machine. The latter is what we 

shall consider as the medhanism is useful in dealing with non-declaratory statements. 

We take, as an example of this sort of declaration. 

Let HI t=    A=B+C 

by which we define HL to stand in place of the statement  ''A=B+C'!. As before 

we can write a program with a chain of comparators that check the presence of 

the word "Let''  before proceeding in the manner particular to this type of 
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statement.    The program is called 

< DL >    ::=   < IdF >  :    =      r<DL>]      "(OsisO)" 

<ldFl>::=    L [ N];]   "(F:k:0)!I    ,     < IdF >    ::=   < IdFl >    "(OsjsO)*' 

<DLL>    ::=<Id>|u 

r »TT   ^>       » » /^,l_- r\\' * id >      tt~     IJ    < «ij  i \''JiB.l\JJ 

where U is the comparator for all characters except end of statement 

punctuation. 

When this program is applied to the example the resultant string is 

.... B, l.iT'.k-.Z),   (Ojjsl), A,(0:k:l)9 =,B,(0:ksl), *,C.(0ska), (Chit6) 

and because of the special treatment of subroutine returns associated with the 

operator \0'i2.t0jt  this strxng is now evaluated by the aasenibler. What is to 

happen is this 

(a) The external nan'e HL is processed by the operator (Fsks2), with the 

result that the internal identifier F(B1) is placed in the push- 

down list. 

(b) The operator (0:j:l) is next encountered. Its operand is the 

internal name generated in (a).  Its purpose is to set up a table 

of absolute addresses where the processed string form of the 

declaration will be stored. This address will be that occupied 

in the example by the character B.  The table of locations of 

processed strings then contains F(B1) and L(B) where ICE) is the 

location of the first character of the string in process. The 

result in the Push-down list is a null symbol ^A-, . 

(c) The k operators replace A, B and C by the corresponding 

internal names. 

(d) The operator (0:i;r) then sets the syntax machine to work on the 

result in the assembler's push-down list which is now 
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where 0. is the internal naice of A, and, of course, is now a single 

character by which the declared syntactic properties of A may be 

recognized. The syntax program starts at 0..  The operator (ö:i;6) 

left in the push-down list now acts as an end of statement mark. 

When the syntax machine is applied now it analyzes the string by the type 

of program of which examples were given in the second part of this report. 
the 

On completion of its work,/program exits via a special true return to the 

syntax program that called  < DL >. This abnormal return switches the input 

of the syntax machine back to the original string.  This abnormal return situa- 

tion can be anticipated when control left the syntax machine for the assembler, 

and the position of the input string stored. 

The processing of non-declaratory statoments can be done in the same way 

except for the treatment of the name of the string. The syntax program is < ND >, 

< ND > ::=  < ND1 >  f < DLL >]  "(OsisO)" 

< NilL > ss^    \uintO} 

and < DLL > is as before. 

If < ND > is applied to the string "&.=B+C'',   the first output string is 

..., (ChnsO), A,(0:k:l), =,B,(0;k;l), +,C,(0:k:l), (0:1:6) 

The processing proceeds as before except for the action of the operator (OsnsO), 

which is to generate an internal formula symbol G_ as its result. Otherwise, 

it acts like the operator (OJJJI) in placing the internal formula symbol in the 

table of processed string locations. The result is 

... , Gr> 0A, =, 0^ +, 0G, (0:1:6) 

When this comes to be processed by the syntax machine, processing starts at the 

second symbol as before, since the result of the operator (0:i:6) placed in the 

push-down list is merely Gr„ As a consequence, the push-down list of tihe assem- 

bler contains a list of symbols, one for each statement processed. For declara- 

tions this symbol is the null symbol; for other statements it is the internal 
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formula symbol. When all statements have been read the string in the assembler's 

push-down list stands in place of the program, which now exists in corresponding 

order as segments on the output string of the syntax machine. These segnents all 

end with a punctuating sym'i>ol that was added by the second pass of the syntax 

machine. 

The assembler also has a second pass, which is an assembly to machine- 

language code. It is here that the substitution of strings for internal 

formulae symbols and declared string symbols occurs. Unless a ''Load and Go'' 

type of assembly is required this second 

assembly would be done when the compiled program is loaded. Actually the loading 

process would also include a syntax analysis since it is very easy to incorporate 
done by 

corrections at load time by replacing whole statements. This would be/writing a 

declaration for the corrected statement, using the internal fonamla symbol for 

the string to be corrected. 

The expansion of internal formulae symbols is done by the assembler switch- 

ing its input. This may be explained as follows. 

Suppose that the assembler is reading from a string SI and finds internal 

formula symbol.  The table of string locations is consulted to find the absolute 

location of the first symbol of the string. The assembler takes this next» 

noting that it has to return to the original string when the end of the 

secondary string is reached. Clearly this process is recursive, if all the 

return addresses are kept. 

3.4 Declarations about Macro-instructions 

An important class of declarations is that in which macro-instructions 

are defined by a declaration such as 

Macro f(X,T,Z) = X(Y+Z) 

where the form on the left, namely F(XfI,Z), is short for the expression on the 
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right. The macro-inatrucLion is different from the closed subroutine in th^t 

every time the short form is used in the program a modified copy is placed in the 

appropriate part of the target program.  In the definition, the parameters ( i.e., 

IfT,Z in the example) are dummy symbols. 

There are two ways in '«rhich we might approach this problem, by using substitu- 

tion methods on the input string of the syntax machine or by using substitution on 

the output as in the previous section. In the first method we would consider macro- 

instructions to be merely shortened ways of writing ports of the source language 

with the expansion to full form being made in the input string, so that, for 

example, writing F(ä.,B,C) is completely equivalent to writing in its place the 

expression A(B+C). This method has the advantage that we do not need to make any 

declarations about the modes of the variables (i.e., whether the variables are 

integer variables, floating-point variables etc.). The second method is more 

appropriate for large sections of a program, such as the ALGOL procedures. Here 

we deal with Method 1. 

The macro declaration is processed as followst 

On the first pass of the syntax machine the word ''Macro'' can be recognized 

and program control switched to the program for processing the rest of the decla- 

ration. The program scans the text and produces a string whose evaluation by the 

assembler will leave the following pattern on the output string. For the example 

"Macro F(X,T,Z) s= X(T+Z)", the pattern is 

Cell address n n+1 n*2 n+3 n+4 n+5 nv6 n*-? n+8 n+9 n+10 

Contents     0 0  0  $  n  ( n+T + ri+2 )  ^ 

The overiined symbols have a special effect on the syntax machine. To 

distinguish them from normal symbols, they might be negative. The first three 

cells are to hold the names which will be the parameters of the macro when it is 

used : the symbols ^ and ^ cause switching of the input, and output of the 

ayntax machine; the symbols like n are address symbols, in the sense that when 
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n    is  read by the syntax machine,   it acts as if it were reading the  symbol from 

the cell whose address is    n . 

The program for making the declaration is    < MD >. 

<MD>    ::=   macro   < MD1 >  (< MD4 >)    < MD10 >   < MD ? >    "{OtmtO)' 

<MD1>::=   < MD2 >    "(OrprO)" 

<MD2>::=   < MD3 >    "(0:j:0)" 

< MD3 >  ;:=    L     fNL]      "(MtksC))" 

<MD4>ss=   < MD9 >     [< MD5 >'l 

< MD5 >  ::=    ,    < MD9 > 

<M)6>;s=    L    [M.^      "{OtktO)" 

<MD7>:?=   < MD8 >     |< MDg >J      "{#'.3:0)" 

<MD8>:;=   < MD6 >    "{OtrxO)" 

<MD9>:;=   < MD6 >    "(OsqsO)" 

< MDXO >  i'.=    :  =      "(5i:3:0)*' 

The s.pplicatiüü of MD to Lie example will yield an output string; - 

.... Fs (Msksl), (0:j:l), (0:p;l)f X, (0:k:l), (Osqil), Y, (0:k:l), (0:q:l) 

, Z, (Osksl), (Osqsl), (g(:s:0), X, (0;ktl), (Oirsl), (,T,(0Jk:l), (Osrtl), + 

, Z, (Osksl), (0:r;l), ), (0;st6), (0:m:3) ♦ 

The new assembly operators are; - 

(Ospsl)  switch the output from the assembler to the output list. 

This ensures that the coded definition of the macro is placed on the 

output string. This operator also clears out a temporary table used 

by the q and r operators. 

(0:q:l)  In the temporary table mentioned above place the internal name (which 

is the operand) and the absolute location in which this was stored 

at the time (0;q:l) was applied to it. 

♦  as with other examples it has been assumed that the input text 
contains no spaces. This simplifies the exposition. 
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(Osr;l)  The operand is an internal name. Look for it in the temfjorary table 

and ii" it is found there, replac* the operand by the absolute address 

rioted against it in the temporary table; othervd.se the operator has no 

effect. The purpose of this operator is to replace the parameters by 

an address referring to the pisition in which the actual parameters 

will be placed when the macro is used, 

(OsssO)  No matter what the operand count of this operator , write the 

character from the data field in the place occupied by the operator,, 

The evaluation of the output of the first scan of the syntax machine causes 

(1) The name of the macro to be written in the table of processed strings 

together with the address ( n in the example) of the processed macro 

definition, 

(2) The p operator then switches the output from the assembler to the 

output string, 

(3) The q operators then take note of the formal parameters in the 

definition, so that the r operators can replace them in the processed 

string by the absolute address of the location to which the internal 

names of the parameters will go when the string is used. 

(4) The s operator writes a mark 0 which will switch the input of 

the second scan of the syntax machine when the macro is used. 

To use such a macro we have to make some extensions to the syntax machine, 

so that the input can be switched from one text to a subsidiary text and then 

returned to the original text-. The symbols that are special in this respect are 

symbols of class M denoting internal macro names, the special symbols ^, <ji 

written by the operator s , and the absolute addresses written by r operators 

in the processed form of the macro definition. 
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Now consider what happens when the syntax machine scans a test in which the 

internal symbol M_ appears. This would not be in the original text so we are 

talking about the second pass of the syntax machine when its input has external, 

names replaced by internal names. Let the original source text contain 

''F (A,B,C)" where F is the macro of our exaiaple and A.,B,C are names of varia- 

bles or constants.  Then the corresponding string within the input for the 

second pass of the syntax machine is Hp, (»0«» 0», 0C»)» w*1*1* the commas are 
used to separate the characters of this string, and the characters 0. etc. are 
the internal character names of A etc. 

A special comparator is used for symbols of class M i.e., names of this 

type of Macro. If such a symbol is recognized by a comparator, the output of 

the syntax machine is switched to the address where the macro definition begins. 

The syntax program then fills the parameter cells with the names of the parame- 

ters used here, namely 0A, 0R and 0™ , When these have been read the syntax 

machine uses yet another special comparator to check the presence on the current 

output position of the symbol Q and if it is found the input of the syntax 

machine is switched to the next position of the macro-definition list (cell n+4 

in the example),  and the output list of the syntax machine reset to its state 

before the M symbol appeared. 

The syntax machine now scans the rest of the macro definition until the 

symbol 0 appears when the input of the syntax machine is switched back to 

what it was before the last M symbol appeared. 3j  the usual technique of 

push-down lists it is simple to make these macros recursive. 

The syntax program for the use of macros is 

where the comparators M and 0 are the special comparators mentioned in the 

text. This should be placed in all parts of a syntax program where an M 

might be under the scrutiny of the syntax machine. 



57 

Part J+.      The Assembler 

In parts 1, 2 and 3 much has already been said about the assembler. 

We consider now only one part of the assembler,  that used to assemble postfix 

strings to target machina language,  using the operators   "a'",   "c" and  "d" 

which form single machine instructions and the operators   "e",   ''v",   "w", 

"x." and  "j''. which manipulate program blocks. 

The assembler for these operators is  best considered separately from the 

assenbler for other operators since the push-down list requires four registers 

AE .  BR.,  GRj. and LEp on each level    r  .    ABp holds the names and operators 

from the postfix string being assembled,    BEj. holds the asäeEibied fonns of single 

instructions provided by the operators   "a",   "c" and  "d",    CR   holds an 

address which refers to a conditional machine instruction or a conditional pro- 

gram block.    It also holds a negative sign *   if the level    r    is    holding a 

single machine instruction in BR .    LR      holds an absolute address which is 

a transfer point generated by a label.    There is also a location counter whose 

contents    L    give the address where the assembled instructions of the program 

go when transferred from ths   push-down list. 

For this assembly it is assumed that the ''k'' operator which provided 

internal names generated  the subscripts on these names by incrementing a counter 

so that the subscript is a relative address for each variable in the block for 

variables of that type.    The final values of these counters  (one for each class 

of variable) can be used to provide base addresses for each block,  from which 

the absolute addresses of any variable can be constructed by the operator   "a.", 

*     We assume that each register of the push-down list has a sign 
position and a value position,   so that representation is by 
sign    ( + or - ) and value , 
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4.1  The Operator. (D:a;l) 

When this operator appears in the position AIL the internal name which 

is its operand is in AR   . The absolute location corresponding to the internal 

name is combined with the machine instruction specified by D and the result 

placed in BR  . CR..-. is made negative to show that BR -i contains a single 
n—1    ir-j. n—j. 

machine instruction. The push-down list level counter is then set to n, so 

that the next item is brought into AR. If the operand was the name of a 

working location send it back to the list of working spaces (see below). 

This operator combines a function specified by D with a working-space 

location. Associated with this operator and with operator ''a"is a list of 

used working spaces. If this list is empty then  c  must construct the 

name of a working location which it can do by incrementing a counter whose 

initial contents was the address of the beginning of a block of storage allo- 

cated for working space. If WS is internal name of this working-space 

variable, (selected from the list, or constructed) then the result in the push- 

down list is 

Ä^ = WS 

BIl  = D;L(WS) i,e., the machine instruction with function D and 
address L(WS) which is the absolute location 
corresponding to the working space name WS„ 

C^ is negative. 

where the operator (D;c:0) was in A^ , Note that the operator* ''c*" acts 

like the operator "k'' in the production of an internal name. We want an 

internal name to appear in Aflj^ because it will subsequently be used as the 

operand of an ''a*' operator.  The next item to be read into the push-down 

list must enter level n+1. 
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4.3 The Operator.   (D:d;0) 

If this appears on level    n    in AH   then we have in the result. 

BR      =   0:0      the machine instruction with ze7."o address. 

CBJJ    =    - n      to show that there is a machine instruction in    BI^. 

The next item to be placed in the pusn-down list must be placed on level    n+1  . 

4.4 The Labeling Operator ,   (0;x;l). 

This  has two cases according as  the operand is a machine instruction 

within the push-down list or Is  a block of code assembled in its final position,. 

Case 1  ;    The initial configuration of the push-down list is 

A^ 

BHJJ holds a machine instruction 

CHJJ is negative 

LRri should be positive 

AB^      (Osxsl) 

This  case is  recognized by    CI^    negative.    LR      should also be positive, 

indicating an unlabeled instruction.     The action of the labeling opertor in this 

case is  to mark level    n    on the push-down list by making    LR      negative. 

Case 2.       In this   case    OR    is positive,     LR,^    is  positive and contains  the 

address which will be the value of the label if one is required.     This is 

furnished by the the operators   ''v",   "w" or "y**.    The action is merely to 

make    LB.      negative. 

In both cases the next item is read into position    AR +1  . 
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4.5      The Operator.   (Otvtr) 

Suppose  that this operator appears in    AIL+-. I   then its operands are in 

levels    n    through    n+r-1    of  the push-down list;   they may be machine instruc- 
list 

tions still in the push-down/(recognized by the CE part of the level being 

negative) or they may be blocks of machine  code already stored,, 

The  first action of the operator is  to check that there is at most one 

labeled operand,  by testing all the LE positions of  the operands?   those levels 

that are labeled will have negative    LR . 

Then the operands are taken in order and process    A    applied to those that 

are  single instructions still within the push-down list.    Process    A.    is conmon 

to operators  * sv",   ''w" and  ''y''   I  i^ places the single instructions on their 

final positions in store, using    L    which is incremented by 1    whenever single 

instructions go to the  store.    If a conditional instruction is stored fron; the 

push-down list in location    L    then    L is  copied into  the GR position and    L+l 

is copied into the LR position.    In both instances the signs describing condi- 

tionality and labeling are preservedc    At this point all the operands havi? been 

stored in their firal positions. 

Now we must connect, any skip exits from the operands.     A single machine skip 

instruction will  reside in its final position with its transfer address  zero, 

and the  corresponding    CR   position will point to the location of the instruc- 

tion.    For program blocks the    CR   position will point to a location holding one 

of the conditional instructions in the block.    If  the transfer address here is 

zero,  then this  is  the only conditional instruction in the block that contributes 

to the   skip exit.     If the address of the  conditional instruction is non-zero it- 

is pointing to another conditioröl instruction contributing to the skip exit. 

Thus,  the    CR   contents is  the first of a chain of addresses ending with 

address    0 , which specify locations of instructions contributing to the skip 

exit,   (except the last,  0). 
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> >   »> In the      v      operator,  these chains are linked together into a single chain, 

which now shows which are the conditional instructions requiring transfer 

addresses.    The first member of this chain is stored in   CB^ .    In LB^   is 

stored the absolute value  of  the label if any of the operands were labeled. 

As usual    LR      shws labeling. 

4.6      The Operator.   (0:w;2) 

If any of the operands are single instructions then process    A   is 

applied to them,  reducing the operands to refer to prograir. blocks in their 

final Position.,    Ths first and second c7*grands are then checked for concii— 

tiomlity and labeling respectively.    Then process    B   is applied to link the 

skip axits from the first operand with the label of the second operand, by 

proceeding down the chain of locations in which are to be inserted the address 

value of  the label.    Finally,  the conditional information    CIL+-,     for the second 

operand replaces    CB^    to form the result on level    n.    The next item is to be 

read into level    n+1. 

Uc7      The Operator.   (0;y;2) 

The action of this operator is  almost identical with that of   (0:ws2) but 

the label from the first operand is used with the chain of locations of condi- 

tional instructions of the second operand. 

In the operators   "v**,   "w"  and   "j"  it may be necessary to provide a 

label value in anticipation of the use of  "x." to label the result.    If the 

result of the operation is an unlabeled block and process    A    has been used to 

insert- single instructions in their final locations then the    LH   position of 

the result should hold    +,L+1  , where    L   was the address of the location last 

used by process    A. 



62 

4.8      Tha Operator.     (OietO) 

If this operator appears in    AH.    ,   then the data on level    n-2    of  the 

push-down list is placed on level n  ,  and tha registers on level    n-2  set to 

zero to indicate nullity.     The next item to be read to  the push-down list 

goes to    ARJ^-L» 
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Conclusion 

This report has outlined a method by which a Compiler can be programmed 

(by syntax machine programs) to accept various source languages»    Apart from 

the final assembly of the postfix string to target-macnine code the method is 

not particularly dependent on the computer making the translation,   since the 

compiler is constructed to perform interpretively on the syntax program and 

on the syntactic operators in the  postfix strings. 

The  syntax prograsa will not be lengthy,   as is demonstrated by the examples 

of Part 2,    Perhaps 300 - 400 instructions in the syntax program are sufficient. 

The quality of the translation will be variable,  since no method of 

economisation of subexpressions is included,  nor is any method of economiaation 

of index register proposed.    Methods for these could be developed,  for example, 

by modifying syntax machine so that it could 

(1) Analyze arithmetic expressions to produce the so called three-address 

form (this might require a right to left scan) and search for common 

subexpressions among the output» 

(2) Abstract from the  source language  some parts,   e.g.,   subscripts and 

loop control  statements,   for analysis  by a more powerful symbol 

manipulator- with re-insertion in the program by methods like  those 

of Part 3.    This would require extensions to the syntax machine so 

that its subprograms   (recognizers) could be written with parameters. 

The speed of translation is likely to be high;  it is estimated that it would 

take 1000 instructions in the  computer making the translation to produce one 

machine instruction of the translation.    On the IBM 704 for example,  this 

means that translation is at the rate of 40 instructions per second. 

The major part of the syntax machine has been simulated on the IBM 65O. 

This interpretive simulation program required 60 instructions and simulated 
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comparators for single characters and the subroutine facilities described, in 

Part 1;  the output mechanism was also simulated. Each pseudo-instruction required 

two cells of  storage.    Some  coding experiments indicate that the assembler wiJU 

require not more than about 400 instructions.    Thus, it seems possible to write 

a quite powerful Compiler in 500 instructions plus the syntax program. 
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